import gradio as gr import huggingface_hub as hfh from requests.exceptions import HTTPError # ===================================================================================================================== # DATA # ===================================================================================================================== # Dict with the tasks considered in this spaces, {pretty name: space tag} TASK_TYPES = { "✍️ Text Generation": "txtgen", "🤏 Summarization": "summ", "🫂 Translation": "trans", "💬 Conversational / Chatbot": "chat", "🤷 Text Question Answering": "txtqa", "🕵️ (Table/Document/Visual) Question Answering": "otherqa", "🎤 Automatic Speech Recognition": "asr", "🌇 Image to Text": "img2txt", } # Dict matching all task types with their possible hub tags, {space tag: (possible hub tags)} HUB_TAGS = { "txtgen": ("text-generation", "text2text-generation"), "summ": ("summarization", "text-generation", "text2text-generation"), "trans": ("translation", "text-generation", "text2text-generation"), "chat": ("conversational", "text-generation", "text2text-generation"), "txtqa": ("text-generation", "text2text-generation"), "otherqa": ("table-question-answering", "document-question-answering", "visual-question-answering"), "asr": ("automatic-speech-recognition"), "img2txt": ("image-to-text"), } assert len(TASK_TYPES) == len(TASK_TYPES) assert all(tag in HUB_TAGS for tag in TASK_TYPES.values()) # Dict with the problems considered in this spaces, {problem: space tag} PROBLEMS = { "I would like a ChatGPT-like model": "chatgpt", "I want to improve the overall quality of the output": "quality", "Speed! Make it faster 🚀": "faster", "I would like to reduce model hallucinations": "hallucinations", "I want to control the length of the output": "length", "The model is returning nothing / random words 🤔": "random", "Other": "other", } # ===================================================================================================================== # ===================================================================================================================== # SUGGESTIONS LOGIC # ===================================================================================================================== def is_valid_task_for_model(model_name, task_type): if model_name == "": return True try: model_tags = hfh.HfApi().model_info(model_name).tags except HTTPError: return True # Assume everything is okay possible_tags = HUB_TAGS[TASK_TYPES[task_type]] return any(tag in model_tags for tag in possible_tags) def get_suggestions(task_type, model_name, problem_type): if task_type == "" or problem_type == "": return "👈 Please select a task type and a problem type." return "" # ===================================================================================================================== # ===================================================================================================================== # GRADIO # ===================================================================================================================== demo = gr.Blocks() with demo: gr.Markdown( """ # 🚀💬 Improving Text Generation 💬🚀 This is a ever-evolving guide on how to improve your text generation results. It is community-led and curated by Hugging Face 🤗 How to use it: 1. Answer the questions using the dropdown menus 2. Click on "Get Suggestions" button 3. Explore the suggestions 🤗 """ ) with gr.Row(): with gr.Column(): task_type = gr.Dropdown( label="What is the task you're trying to accomplish?", choices=list(TASK_TYPES.keys()), interactive=True, ) model_name = gr.Textbox( label="Which model are you using? (leave blank if you haven't decided)", placeholder="e.g. google/flan-t5-xl", interactive=True, ) problem_type = gr.Dropdown( label="What would you like to improve?", choices=list(PROBLEMS.keys()), interactive=True, ) button = gr.Button(value="Get Suggestions!") with gr.Column(scale=2): suggestions = gr.Markdown(value="") button.click(get_suggestions, inputs=[task_type, model_name, problem_type], outputs=suggestions) # ===================================================================================================================== if __name__ == "__main__": demo.launch()