Spaces:
Runtime error
Runtime error
File size: 8,442 Bytes
9491afb f2953c9 9491afb 52168c1 9491afb 52168c1 1623898 5b16b6d c72498d 47fef84 9491afb 5f72895 9491afb 523ea6f 5f72895 9491afb c72498d 9491afb bcc58dd 0593151 94e12b2 1d0cf9b bcc58dd d02e668 0593151 97c0552 61000a5 c80f0d8 bcc58dd c80f0d8 a73a75f c80f0d8 d02e668 b7701f0 d02e668 f969f8c d02e668 b7701f0 f969f8c a9ba1be 1e317fe 9491afb d02e668 5b16b6d 52168c1 d02e668 1d0cf9b 9491afb 52168c1 9491afb 52168c1 9491afb 048d51f fcc8348 9c6d83a 69b75bc fcc8348 d02e668 fcc8348 fb2451e fcc8348 6ca0772 107a597 2589a5c a7c9a23 107a597 2589a5c baed515 6ca0772 bbffc91 9491afb 1d0cf9b 52168c1 1d0cf9b 9b203df 1d0cf9b e786e50 9c6d83a 9b203df e786e50 1d0cf9b e786e50 1d0cf9b 040cd5b 6c45b6a 9b203df e786e50 040cd5b e786e50 040cd5b e786e50 2708056 9b203df 040cd5b fcc8348 9491afb f60f93c cd5da21 1039972 17dd268 cd5da21 9fbc7a1 17dd268 cd5da21 f60f93c 2642660 1039972 52168c1 9491afb 5f72895 3cc9495 91705ce 9491afb bcc58dd 5f72895 0593151 5f72895 0593151 bcc58dd 0593151 7d5e631 9491afb 2642660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import os
import random
from huggingface_hub import InferenceClient
import gradio as gr
#from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
from PIL import Image
import agent
from models import models
import urllib.request
import uuid
import requests
import io
from chat_models import models as c_models
loaded_model=[]
chat_model=[]
for i,model in enumerate(models):
loaded_model.append(gr.load(f'models/{model}'))
print (loaded_model)
for i,model_c in enumerate(c_models):
chat_model.append(model_c)
print (chat_model)
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
#client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
history = []
def gen_from_infer(purpose,history,image,model_drop,chat_drop,choice,seed,im_seed):
#out_img = infer(out_prompt)
history.clear()
if seed == 0:
seed = random.randint(1,1111111111111111)
if im_seed == 0:
im_seed = random.randint(1,1111111111111111)
out_prompt=generate(purpose,history,chat_drop,seed)
history.append((purpose,out_prompt))
yield (history,None)
infer_model = models[int(model_drop)]
print (infer_model)
infer=InferenceClient(f'{infer_model}')
print (infer)
out_img=infer.text_to_image(
prompt=out_prompt,
negative_prompt=None,
height=512,
width=512,
num_inference_steps=None,
guidance_scale=None,
model=None,
seed=im_seed,
)
yield (history,out_img)
def format_prompt(message, history,seed):
#print (f'HISTORY ::: {history}')
prompt = "<s>"
t=False
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
print(f'MESSAGE :: {message}, USER_PROMPT :: {user_prompt}')
if user_prompt == message:
t=True
if t==True:
prompt = "<s>"+f"[INST] {message} [/INST]"
return prompt
else:
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(in_prompt,history,model_drop,seed):
client = InferenceClient(c_models[int(model_drop)])
print(f'history :: {history}')
prompt=format_prompt(in_prompt,history,seed)
if seed == 0:
seed = random.randint(1,1111111111111111)
print (seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=1048,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = agent.GENERATE_PROMPT + prompt
print(content)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
return resp
def run_idefics(in_prompt,history,image,model_drop,seed):
send_list=[]
#client = InferenceClient("HuggingFaceM4/idefics-9b-instruct")
client = InferenceClient("HuggingFaceM4/idefics-80b-instruct")
print(f'history :: {history}')
prompt=format_prompt(in_prompt,history,seed)
seed = random.randint(1,1111111111111111)
print (seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=512,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
generation_args = {
"max_new_tokens": 256,
"repetition_penalty": 1.0,
"stop_sequences": ["<end_of_utterance>", "\nUser:"],
}
#content = f'{agent.IDEFICS_PROMPT}' +"\nUser"+ in_prompt +f' '
#send_list.append(agent.IDEFICS_PROMPT)
#send_list.append(prompt)
#send_list.append(image)
content = "\nUser: What is in this image?<end_of_utterance>\nAssistant:"
print(content)
stream = client.text_generation(prompt=content, **generation_args)
#stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
#resp = ""
#for response in stream:
# resp += response.token.text
print (stream)
return stream
def generate(purpose,history,chat_drop,seed):
print (history)
out_prompt = run_gpt(purpose,history,chat_drop,seed)
return out_prompt
def describe(purpose,history,image,chat_drop,seed):
print (history)
#purpose=f"{purpose},"
out_prompt = run_idefics(purpose,history,image,chat_drop,seed)
return out_prompt
def run(purpose,history,image,model_drop,chat_drop,choice,seed):
if choice == "Generate":
#out_img = infer(out_prompt)
out_prompt=generate(purpose,history,chat_drop,seed)
history.append((purpose,out_prompt))
yield (history,None)
model=loaded_model[int(model_drop)]
out_img=model(out_prompt)
#return (history,None)
print(out_img)
url=f'https://johann22-chat-diffusion-describe.hf.space/file={out_img}'
print(url)
uid = uuid.uuid4()
#urllib.request.urlretrieve(image, 'tmp.png')
#out=Image.open('tmp.png')
r = requests.get(url, stream=True)
if r.status_code == 200:
out = Image.open(io.BytesIO(r.content))
#yield ([(purpose,out_prompt)],out)
yield (history,out)
else:
yield ([(purpose,"an Error occured")],None)
if choice == "Describe":
#out_img = infer(out_prompt)
out_prompt=describe(purpose,history,image,chat_drop,seed)
history.append((purpose,out_prompt))
yield (history,None)
################################################
style="""
.top_head{
background: no-repeat;
background-image: url(https://huggingface.co/spaces/johann22/chat-diffusion/resolve/main/image.png);
background-position-y: bottom;
height: 180px;
background-position-x: center;
}
.top_h1{
color: white!important;
-webkit-text-stroke-width: medium;
}
"""
with gr.Blocks(css=style) as iface:
gr.HTML("""<div class="top_head"><center><br><h1 class="top_h1">Mixtral Chat Diffusion</h1><br><h3 class="top_h1">This chatbot will generate images</h3></center></div?""")
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
with gr.Row():
with gr.Column(scale=1):
chatbot=gr.Chatbot(show_copy_button=True, layout='panel')
with gr.Row():
agent_choice = gr.Radio(choices=["Generate","Describe"],value="Generate")
msg = gr.Textbox()
with gr.Accordion("Controls", open=False):
model_drop=gr.Dropdown(label="Diffusion Models", type="index", choices=[m for m in models], value=models[0])
chat_model_drop=gr.Dropdown(label="Chatbot Models", type="index", choices=[m for m in c_models], value=c_models[0])
chat_seed=gr.Slider(label="Prompt Seed", minimum=0,maximum=1000000000000,
value=random.randint(1,1000000000000),step=1,
interactive=True,
info="Set Seed to 0 to randomize the session")
image_seed=gr.Slider(label="Image Seed", minimum=0,maximum=1000000000000,
value=random.randint(1,1000000000000),step=1,
interactive=True,
info="Set Seed to 0 to randomize the session")
with gr.Group():
with gr.Row():
submit_b = gr.Button()
stop_b = gr.Button("Stop")
clear = gr.ClearButton([msg, chatbot])
test_btn = gr.Button("Test")
with gr.Column(scale=2):
sumbox=gr.Image(label="Image")
run_test = test_btn.click(gen_from_infer, [msg,chatbot,sumbox,model_drop,chat_model_drop,agent_choice,chat_seed,image_seed],[chatbot,sumbox],concurrency_limit=20)
sub_b = submit_b.click(run, [msg,chatbot,sumbox,model_drop,chat_model_drop,agent_choice,chat_seed],[chatbot,sumbox])
sub_e = msg.submit(run, [msg, chatbot,sumbox,model_drop,chat_model_drop,agent_choice,chat_seed], [chatbot,sumbox])
stop_b.click(None,None,None, cancels=[sub_b,sub_e])
iface.queue(default_concurrency_limit=None).launch()
|