Spaces:
Sleeping
Sleeping
Upload app.py.bak
Browse files- app.py.bak +190 -0
app.py.bak
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple, Dict
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import supervision as sv
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from ultralytics import YOLO
|
| 8 |
+
|
| 9 |
+
# Define models
|
| 10 |
+
MODEL_OPTIONS = {
|
| 11 |
+
"YOLOv11-Small": "medieval-yolo11s-seg.pt"
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
# Dictionary to store loaded models
|
| 15 |
+
models: Dict[str, YOLO] = {}
|
| 16 |
+
|
| 17 |
+
# Load all models
|
| 18 |
+
for name, model_file in MODEL_OPTIONS.items():
|
| 19 |
+
try:
|
| 20 |
+
model_path = hf_hub_download(
|
| 21 |
+
repo_id="johnlockejrr/medieval-manuscript-yolov11-seg",
|
| 22 |
+
filename=model_file
|
| 23 |
+
)
|
| 24 |
+
models[name] = YOLO(model_path)
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error loading model {name}: {str(e)}")
|
| 27 |
+
|
| 28 |
+
# Create annotators
|
| 29 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
|
| 30 |
+
MASK_ANNOTATOR = sv.MaskAnnotator()
|
| 31 |
+
|
| 32 |
+
def process_masks(masks: np.ndarray, target_shape: Tuple[int, int]) -> np.ndarray:
|
| 33 |
+
"""Process and resize masks to target shape"""
|
| 34 |
+
if masks is None:
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
processed_masks = []
|
| 38 |
+
h, w = target_shape
|
| 39 |
+
for mask in masks:
|
| 40 |
+
# Resize mask to target dimensions
|
| 41 |
+
resized_mask = cv2.resize(mask.astype(float), (w, h), interpolation=cv2.INTER_LINEAR)
|
| 42 |
+
# Threshold to create binary mask
|
| 43 |
+
processed_masks.append(resized_mask > 0.5)
|
| 44 |
+
|
| 45 |
+
return np.array(processed_masks)
|
| 46 |
+
|
| 47 |
+
def detect_and_annotate(
|
| 48 |
+
image: np.ndarray,
|
| 49 |
+
model_name: str,
|
| 50 |
+
conf_threshold: float,
|
| 51 |
+
iou_threshold: float
|
| 52 |
+
) -> np.ndarray:
|
| 53 |
+
try:
|
| 54 |
+
if image is None:
|
| 55 |
+
return None
|
| 56 |
+
|
| 57 |
+
model = models.get(model_name)
|
| 58 |
+
if model is None:
|
| 59 |
+
raise ValueError(f"Model {model_name} not loaded")
|
| 60 |
+
|
| 61 |
+
# Perform inference
|
| 62 |
+
results = model.predict(
|
| 63 |
+
image,
|
| 64 |
+
conf=conf_threshold,
|
| 65 |
+
iou=iou_threshold
|
| 66 |
+
)[0]
|
| 67 |
+
|
| 68 |
+
# Convert results to supervision Detections
|
| 69 |
+
boxes = results.boxes.xyxy.cpu().numpy()
|
| 70 |
+
confidence = results.boxes.conf.cpu().numpy()
|
| 71 |
+
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
| 72 |
+
|
| 73 |
+
# Process masks
|
| 74 |
+
masks = None
|
| 75 |
+
if results.masks is not None:
|
| 76 |
+
masks = results.masks.data.cpu().numpy()
|
| 77 |
+
print(f"Original mask shape: {masks.shape}") # Debug
|
| 78 |
+
|
| 79 |
+
# Fix the shape mismatch - should be (num_masks, H, W)
|
| 80 |
+
if masks.shape[0] != len(boxes):
|
| 81 |
+
masks = np.transpose(masks, (2, 0, 1)) # Convert from (H,W,N) to (N,H,W)
|
| 82 |
+
|
| 83 |
+
print(f"Processed mask shape: {masks.shape}") # Debug
|
| 84 |
+
|
| 85 |
+
# Resize masks to original image dimensions
|
| 86 |
+
h, w = image.shape[:2]
|
| 87 |
+
resized_masks = []
|
| 88 |
+
for mask in masks:
|
| 89 |
+
resized_mask = cv2.resize(mask, (w, h), interpolation=cv2.INTER_LINEAR)
|
| 90 |
+
resized_masks.append(resized_mask)
|
| 91 |
+
masks = np.array(resized_masks)
|
| 92 |
+
masks = masks > 0.5 # Convert to boolean
|
| 93 |
+
|
| 94 |
+
# Create Detections object
|
| 95 |
+
detections = sv.Detections(
|
| 96 |
+
xyxy=boxes,
|
| 97 |
+
confidence=confidence,
|
| 98 |
+
class_id=class_ids,
|
| 99 |
+
mask=masks
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Create labels with confidence scores
|
| 103 |
+
labels = [
|
| 104 |
+
f"{results.names[class_id]} ({conf:.2f})"
|
| 105 |
+
for class_id, conf in zip(class_ids, confidence)
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
# Annotate image
|
| 109 |
+
annotated_image = image.copy()
|
| 110 |
+
if masks is not None:
|
| 111 |
+
annotated_image = MASK_ANNOTATOR.annotate(
|
| 112 |
+
scene=annotated_image,
|
| 113 |
+
detections=detections
|
| 114 |
+
)
|
| 115 |
+
annotated_image = LABEL_ANNOTATOR.annotate(
|
| 116 |
+
scene=annotated_image,
|
| 117 |
+
detections=detections,
|
| 118 |
+
labels=labels
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
return annotated_image
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
print(f"Error during detection: {str(e)}")
|
| 125 |
+
return image
|
| 126 |
+
|
| 127 |
+
# Create Gradio interface
|
| 128 |
+
with gr.Blocks() as demo:
|
| 129 |
+
gr.Markdown("# Medieval Manuscript Segmentation with YOLO")
|
| 130 |
+
|
| 131 |
+
with gr.Row():
|
| 132 |
+
with gr.Column():
|
| 133 |
+
input_image = gr.Image(label="Input Image", type='numpy')
|
| 134 |
+
with gr.Accordion("Detection Settings", open=True):
|
| 135 |
+
model_selector = gr.Dropdown(
|
| 136 |
+
choices=list(MODEL_OPTIONS.keys()),
|
| 137 |
+
value=list(MODEL_OPTIONS.keys())[0],
|
| 138 |
+
label="Model"
|
| 139 |
+
)
|
| 140 |
+
conf_threshold = gr.Slider(
|
| 141 |
+
label="Confidence Threshold",
|
| 142 |
+
minimum=0.0,
|
| 143 |
+
maximum=1.0,
|
| 144 |
+
step=0.05,
|
| 145 |
+
value=0.25
|
| 146 |
+
)
|
| 147 |
+
iou_threshold = gr.Slider(
|
| 148 |
+
label="IoU Threshold",
|
| 149 |
+
minimum=0.0,
|
| 150 |
+
maximum=1.0,
|
| 151 |
+
step=0.05,
|
| 152 |
+
value=0.45
|
| 153 |
+
)
|
| 154 |
+
detect_btn = gr.Button("Detect", variant="primary")
|
| 155 |
+
clear_btn = gr.Button("Clear")
|
| 156 |
+
|
| 157 |
+
with gr.Column():
|
| 158 |
+
output_image = gr.Image(label="Segmentation Result", type='numpy')
|
| 159 |
+
|
| 160 |
+
def process_image(image, model_name, conf_threshold, iou_threshold):
|
| 161 |
+
try:
|
| 162 |
+
if image is None:
|
| 163 |
+
return None, None
|
| 164 |
+
annotated_image = detect_and_annotate(image, model_name, conf_threshold, iou_threshold)
|
| 165 |
+
return image, annotated_image
|
| 166 |
+
except Exception as e:
|
| 167 |
+
print(f"Error in process_image: {str(e)}")
|
| 168 |
+
return image, image # Fallback to original image
|
| 169 |
+
|
| 170 |
+
def clear():
|
| 171 |
+
return None, None
|
| 172 |
+
|
| 173 |
+
detect_btn.click(
|
| 174 |
+
process_image,
|
| 175 |
+
inputs=[input_image, model_selector, conf_threshold, iou_threshold],
|
| 176 |
+
outputs=[input_image, output_image]
|
| 177 |
+
)
|
| 178 |
+
clear_btn.click(
|
| 179 |
+
clear,
|
| 180 |
+
inputs=None,
|
| 181 |
+
outputs=[input_image, output_image]
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if __name__ == "__main__":
|
| 185 |
+
demo.launch(
|
| 186 |
+
server_name="0.0.0.0",
|
| 187 |
+
server_port=7860,
|
| 188 |
+
show_error=True,
|
| 189 |
+
debug=True
|
| 190 |
+
)
|