Upload app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ import cv2
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from ultralytics import YOLO
|
8 |
from PIL import Image
|
|
|
|
|
|
|
9 |
|
10 |
# Page config
|
11 |
st.set_page_config(
|
@@ -48,20 +51,31 @@ def load_models():
|
|
48 |
return models
|
49 |
|
50 |
def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
|
51 |
-
"""Simplify polygon contours using Douglas-Peucker algorithm.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
result = []
|
53 |
for polygon in polygons:
|
54 |
if len(polygon) < 4:
|
55 |
result.append(None)
|
56 |
continue
|
|
|
57 |
perimeter = cv2.arcLength(polygon, True)
|
58 |
approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
|
59 |
if len(approx) < 4:
|
60 |
result.append(None)
|
61 |
continue
|
|
|
62 |
result.append(approx.squeeze())
|
63 |
return result
|
64 |
|
|
|
65 |
class OutlineMaskAnnotator:
|
66 |
def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
|
67 |
self.color = color
|
@@ -71,6 +85,7 @@ class OutlineMaskAnnotator:
|
|
71 |
def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
|
72 |
if detections.mask is None:
|
73 |
return scene
|
|
|
74 |
scene = scene.copy()
|
75 |
for mask in detections.mask:
|
76 |
contours, _ = cv2.findContours(
|
@@ -81,6 +96,7 @@ class OutlineMaskAnnotator:
|
|
81 |
if self.simplify:
|
82 |
contours = simplify_polygons(contours)
|
83 |
contours = [c for c in contours if c is not None]
|
|
|
84 |
cv2.drawContours(
|
85 |
scene,
|
86 |
contours,
|
@@ -90,6 +106,7 @@ class OutlineMaskAnnotator:
|
|
90 |
)
|
91 |
return scene
|
92 |
|
|
|
93 |
LABEL_ANNOTATOR = sv.LabelAnnotator(
|
94 |
text_color=sv.Color.BLACK,
|
95 |
text_scale=0.35,
|
@@ -104,20 +121,26 @@ def detect_and_annotate(
|
|
104 |
iou_threshold: float,
|
105 |
simplify_polygons_option: bool
|
106 |
) -> np.ndarray:
|
|
|
107 |
model = models[model_name]
|
|
|
|
|
108 |
results = model.predict(
|
109 |
image,
|
110 |
conf=conf_threshold,
|
111 |
iou=iou_threshold
|
112 |
)[0]
|
113 |
|
|
|
114 |
boxes = results.boxes.xyxy.cpu().numpy()
|
115 |
confidence = results.boxes.conf.cpu().numpy()
|
116 |
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
117 |
|
|
|
118 |
masks = None
|
119 |
if results.masks is not None:
|
120 |
masks = results.masks.data.cpu().numpy()
|
|
|
121 |
masks = np.transpose(masks, (1, 2, 0))
|
122 |
h, w = image.shape[:2]
|
123 |
resized_masks = []
|
@@ -126,6 +149,7 @@ def detect_and_annotate(
|
|
126 |
resized_masks.append(resized_mask > 0.5)
|
127 |
masks = np.stack(resized_masks) if resized_masks else None
|
128 |
|
|
|
129 |
detections = sv.Detections(
|
130 |
xyxy=boxes,
|
131 |
confidence=confidence,
|
@@ -133,18 +157,21 @@ def detect_and_annotate(
|
|
133 |
mask=masks
|
134 |
)
|
135 |
|
|
|
136 |
labels = [
|
137 |
f"{results.names[class_id]} ({conf:.2f})"
|
138 |
for class_id, conf
|
139 |
in zip(class_ids, confidence)
|
140 |
]
|
141 |
|
|
|
142 |
mask_annotator = OutlineMaskAnnotator(
|
143 |
color=(255, 0, 0),
|
144 |
thickness=2,
|
145 |
simplify=simplify_polygons_option
|
146 |
)
|
147 |
|
|
|
148 |
annotated_image = image.copy()
|
149 |
if masks is not None:
|
150 |
annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
|
@@ -161,12 +188,14 @@ st.title("Medieval Manuscript Segmentation with YOLO")
|
|
161 |
# Sidebar for controls
|
162 |
with st.sidebar:
|
163 |
st.header("Detection Settings")
|
|
|
164 |
model_name = st.selectbox(
|
165 |
"Model",
|
166 |
options=list(MODEL_OPTIONS.keys()),
|
167 |
index=0,
|
168 |
help="Select YOLO model variant"
|
169 |
)
|
|
|
170 |
conf_threshold = st.slider(
|
171 |
"Confidence Threshold",
|
172 |
min_value=0.0,
|
@@ -175,6 +204,7 @@ with st.sidebar:
|
|
175 |
step=0.05,
|
176 |
help="Minimum confidence score for detections"
|
177 |
)
|
|
|
178 |
iou_threshold = st.slider(
|
179 |
"IoU Threshold",
|
180 |
min_value=0.0,
|
@@ -183,57 +213,45 @@ with st.sidebar:
|
|
183 |
step=0.05,
|
184 |
help="Decrease for stricter detection, increase for more overlapping masks"
|
185 |
)
|
|
|
186 |
simplify_polygons_option = st.checkbox(
|
187 |
"Simplify Polygons",
|
188 |
value=False,
|
189 |
help="Simplify polygon contours for cleaner outlines"
|
190 |
)
|
191 |
|
192 |
-
# Main content area
|
193 |
col1, col2 = st.columns(2)
|
194 |
|
195 |
with col1:
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
208 |
|
209 |
with col2:
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
else:
|
227 |
-
st.info("Upload an image to see detection results")
|
228 |
-
|
229 |
-
# Add some custom CSS to ensure perfect alignment
|
230 |
-
st.markdown("""
|
231 |
-
<style>
|
232 |
-
[data-testid="stHorizontalBlock"] {
|
233 |
-
align-items: center;
|
234 |
-
}
|
235 |
-
.stContainer {
|
236 |
-
height: 100%;
|
237 |
-
}
|
238 |
-
</style>
|
239 |
-
""", unsafe_allow_html=True)
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from ultralytics import YOLO
|
8 |
from PIL import Image
|
9 |
+
import torch
|
10 |
+
|
11 |
+
torch.cuda.is_available = lambda: False # Force CPU-only mode in HF Space
|
12 |
|
13 |
# Page config
|
14 |
st.set_page_config(
|
|
|
51 |
return models
|
52 |
|
53 |
def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
|
54 |
+
"""Simplify polygon contours using Douglas-Peucker algorithm.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
polygons: List of polygon contours
|
58 |
+
approx_level: Approximation level (0-1), lower values mean more simplification
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
List of simplified polygons (or None for invalid polygons)
|
62 |
+
"""
|
63 |
result = []
|
64 |
for polygon in polygons:
|
65 |
if len(polygon) < 4:
|
66 |
result.append(None)
|
67 |
continue
|
68 |
+
|
69 |
perimeter = cv2.arcLength(polygon, True)
|
70 |
approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
|
71 |
if len(approx) < 4:
|
72 |
result.append(None)
|
73 |
continue
|
74 |
+
|
75 |
result.append(approx.squeeze())
|
76 |
return result
|
77 |
|
78 |
+
# Custom MaskAnnotator for outline-only masks with simplified polygons
|
79 |
class OutlineMaskAnnotator:
|
80 |
def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
|
81 |
self.color = color
|
|
|
85 |
def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
|
86 |
if detections.mask is None:
|
87 |
return scene
|
88 |
+
|
89 |
scene = scene.copy()
|
90 |
for mask in detections.mask:
|
91 |
contours, _ = cv2.findContours(
|
|
|
96 |
if self.simplify:
|
97 |
contours = simplify_polygons(contours)
|
98 |
contours = [c for c in contours if c is not None]
|
99 |
+
|
100 |
cv2.drawContours(
|
101 |
scene,
|
102 |
contours,
|
|
|
106 |
)
|
107 |
return scene
|
108 |
|
109 |
+
# Create annotators with new settings
|
110 |
LABEL_ANNOTATOR = sv.LabelAnnotator(
|
111 |
text_color=sv.Color.BLACK,
|
112 |
text_scale=0.35,
|
|
|
121 |
iou_threshold: float,
|
122 |
simplify_polygons_option: bool
|
123 |
) -> np.ndarray:
|
124 |
+
# Get the selected model
|
125 |
model = models[model_name]
|
126 |
+
|
127 |
+
# Perform inference
|
128 |
results = model.predict(
|
129 |
image,
|
130 |
conf=conf_threshold,
|
131 |
iou=iou_threshold
|
132 |
)[0]
|
133 |
|
134 |
+
# Convert results to supervision Detections
|
135 |
boxes = results.boxes.xyxy.cpu().numpy()
|
136 |
confidence = results.boxes.conf.cpu().numpy()
|
137 |
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
138 |
|
139 |
+
# Handle masks if they exist
|
140 |
masks = None
|
141 |
if results.masks is not None:
|
142 |
masks = results.masks.data.cpu().numpy()
|
143 |
+
# Convert from (N,H,W) to (H,W,N) for processing
|
144 |
masks = np.transpose(masks, (1, 2, 0))
|
145 |
h, w = image.shape[:2]
|
146 |
resized_masks = []
|
|
|
149 |
resized_masks.append(resized_mask > 0.5)
|
150 |
masks = np.stack(resized_masks) if resized_masks else None
|
151 |
|
152 |
+
# Create Detections object
|
153 |
detections = sv.Detections(
|
154 |
xyxy=boxes,
|
155 |
confidence=confidence,
|
|
|
157 |
mask=masks
|
158 |
)
|
159 |
|
160 |
+
# Create labels with confidence scores
|
161 |
labels = [
|
162 |
f"{results.names[class_id]} ({conf:.2f})"
|
163 |
for class_id, conf
|
164 |
in zip(class_ids, confidence)
|
165 |
]
|
166 |
|
167 |
+
# Create mask annotator based on the simplify option
|
168 |
mask_annotator = OutlineMaskAnnotator(
|
169 |
color=(255, 0, 0),
|
170 |
thickness=2,
|
171 |
simplify=simplify_polygons_option
|
172 |
)
|
173 |
|
174 |
+
# Annotate image
|
175 |
annotated_image = image.copy()
|
176 |
if masks is not None:
|
177 |
annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
|
|
|
188 |
# Sidebar for controls
|
189 |
with st.sidebar:
|
190 |
st.header("Detection Settings")
|
191 |
+
|
192 |
model_name = st.selectbox(
|
193 |
"Model",
|
194 |
options=list(MODEL_OPTIONS.keys()),
|
195 |
index=0,
|
196 |
help="Select YOLO model variant"
|
197 |
)
|
198 |
+
|
199 |
conf_threshold = st.slider(
|
200 |
"Confidence Threshold",
|
201 |
min_value=0.0,
|
|
|
204 |
step=0.05,
|
205 |
help="Minimum confidence score for detections"
|
206 |
)
|
207 |
+
|
208 |
iou_threshold = st.slider(
|
209 |
"IoU Threshold",
|
210 |
min_value=0.0,
|
|
|
213 |
step=0.05,
|
214 |
help="Decrease for stricter detection, increase for more overlapping masks"
|
215 |
)
|
216 |
+
|
217 |
simplify_polygons_option = st.checkbox(
|
218 |
"Simplify Polygons",
|
219 |
value=False,
|
220 |
help="Simplify polygon contours for cleaner outlines"
|
221 |
)
|
222 |
|
223 |
+
# Main content area
|
224 |
col1, col2 = st.columns(2)
|
225 |
|
226 |
with col1:
|
227 |
+
st.subheader("Input Image")
|
228 |
+
uploaded_file = st.file_uploader(
|
229 |
+
"Upload an image",
|
230 |
+
type=["jpg", "jpeg", "png"],
|
231 |
+
key="file_uploader"
|
232 |
+
)
|
233 |
+
|
234 |
+
if uploaded_file is not None:
|
235 |
+
image = np.array(Image.open(uploaded_file))
|
236 |
+
st.image(image, caption="Uploaded Image", use_container_width=True) # Updated here
|
237 |
+
else:
|
238 |
+
image = None
|
239 |
+
st.info("Please upload an image file")
|
240 |
|
241 |
with col2:
|
242 |
+
st.subheader("Detection Result")
|
243 |
+
|
244 |
+
if st.button("Detect", type="primary") and image is not None:
|
245 |
+
with st.spinner("Processing image..."):
|
246 |
+
annotated_image = detect_and_annotate(
|
247 |
+
image,
|
248 |
+
model_name,
|
249 |
+
conf_threshold,
|
250 |
+
iou_threshold,
|
251 |
+
simplify_polygons_option
|
252 |
+
)
|
253 |
+
st.image(annotated_image, caption="Detection Result", use_container_width=True) # Updated here
|
254 |
+
elif image is None:
|
255 |
+
st.warning("Please upload an image first")
|
256 |
+
else:
|
257 |
+
st.info("Click the Detect button to process the image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|