Upload 3 files
Browse files- README.md +9 -14
- app.py +257 -0
- requirements.txt +9 -0
README.md
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
-
---
|
2 |
-
title: Medieval
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: streamlit
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
license: mit
|
11 |
-
short_description: Medieval Manuscript YOLO11 Segmentation
|
12 |
-
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Medieval Manuscript YOLO11 Segmentation
|
3 |
+
emoji: π
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: streamlit
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
---
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Dict, List, Optional
|
2 |
+
import streamlit as st
|
3 |
+
import supervision as sv
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from ultralytics import YOLO
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
+
|
11 |
+
torch.cuda.is_available = lambda: False # Force CPU-only mode in HF Space
|
12 |
+
|
13 |
+
# Page config
|
14 |
+
st.set_page_config(
|
15 |
+
page_title="Medieval Manuscript Segmentation",
|
16 |
+
page_icon="π",
|
17 |
+
layout="wide"
|
18 |
+
)
|
19 |
+
|
20 |
+
# Define models
|
21 |
+
MODEL_OPTIONS = {
|
22 |
+
"YOLOv11-Nano": "medieval-yolo11n-seg.pt",
|
23 |
+
"YOLOv11-Small": "medieval-yolo11s-seg.pt",
|
24 |
+
"YOLOv11-Medium": "medieval-yolo11m-seg.pt",
|
25 |
+
"YOLOv11-Large": "medieval-yolo11l-seg.pt",
|
26 |
+
"YOLOv11-XLarge": "medieval-yolo11x-seg.pt",
|
27 |
+
"YOLOv11-Medium Zones": "medieval_zones-yolo11m-seg.pt",
|
28 |
+
"YOLOv11-Medium Lines": "medieval_lines-yolo11m-seg.pt",
|
29 |
+
"ms_yolo11m-seg4-YTG": "ms_yolo11m-seg4-YTG.pt",
|
30 |
+
"ms_yolo11m-seg5-swin_t": "ms_yolo11m-seg5-swin_t.pt",
|
31 |
+
"ms_yolo11x-seg2-swin_t": "ms_yolo11x-seg2-swin_t.pt",
|
32 |
+
"ms_yolo11m-seg6-convnext_tiny": "ms_yolo11m-seg6-convnext_tiny.pt",
|
33 |
+
"yolo11m-seg-gpt": "yolo11m-seg-gpt.pt",
|
34 |
+
"ms_yolo11x-seg3-swin_t-fpn": "ms_yolo11x-seg3-swin_t-fpn.pt",
|
35 |
+
"yolo11x-seg-gpt7": "yolo11x-seg-gpt7.pt"
|
36 |
+
}
|
37 |
+
|
38 |
+
@st.cache_resource
|
39 |
+
def load_models():
|
40 |
+
"""Load all models and cache them."""
|
41 |
+
models: Dict[str, YOLO] = {}
|
42 |
+
for name, model_file in MODEL_OPTIONS.items():
|
43 |
+
try:
|
44 |
+
model_path = hf_hub_download(
|
45 |
+
repo_id="johnlockejrr/medieval-manuscript-yolov11-seg",
|
46 |
+
filename=model_file
|
47 |
+
)
|
48 |
+
models[name] = YOLO(model_path)
|
49 |
+
except Exception as e:
|
50 |
+
st.warning(f"Error loading model {name}: {str(e)}")
|
51 |
+
return models
|
52 |
+
|
53 |
+
def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
|
54 |
+
"""Simplify polygon contours using Douglas-Peucker algorithm.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
polygons: List of polygon contours
|
58 |
+
approx_level: Approximation level (0-1), lower values mean more simplification
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
List of simplified polygons (or None for invalid polygons)
|
62 |
+
"""
|
63 |
+
result = []
|
64 |
+
for polygon in polygons:
|
65 |
+
if len(polygon) < 4:
|
66 |
+
result.append(None)
|
67 |
+
continue
|
68 |
+
|
69 |
+
perimeter = cv2.arcLength(polygon, True)
|
70 |
+
approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
|
71 |
+
if len(approx) < 4:
|
72 |
+
result.append(None)
|
73 |
+
continue
|
74 |
+
|
75 |
+
result.append(approx.squeeze())
|
76 |
+
return result
|
77 |
+
|
78 |
+
# Custom MaskAnnotator for outline-only masks with simplified polygons
|
79 |
+
class OutlineMaskAnnotator:
|
80 |
+
def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
|
81 |
+
self.color = color
|
82 |
+
self.thickness = thickness
|
83 |
+
self.simplify = simplify
|
84 |
+
|
85 |
+
def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
|
86 |
+
if detections.mask is None:
|
87 |
+
return scene
|
88 |
+
|
89 |
+
scene = scene.copy()
|
90 |
+
for mask in detections.mask:
|
91 |
+
contours, _ = cv2.findContours(
|
92 |
+
mask.astype(np.uint8),
|
93 |
+
cv2.RETR_EXTERNAL,
|
94 |
+
cv2.CHAIN_APPROX_SIMPLE
|
95 |
+
)
|
96 |
+
if self.simplify:
|
97 |
+
contours = simplify_polygons(contours)
|
98 |
+
contours = [c for c in contours if c is not None]
|
99 |
+
|
100 |
+
cv2.drawContours(
|
101 |
+
scene,
|
102 |
+
contours,
|
103 |
+
-1,
|
104 |
+
self.color,
|
105 |
+
self.thickness
|
106 |
+
)
|
107 |
+
return scene
|
108 |
+
|
109 |
+
# Create annotators with new settings
|
110 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator(
|
111 |
+
text_color=sv.Color.BLACK,
|
112 |
+
text_scale=0.35,
|
113 |
+
text_thickness=1,
|
114 |
+
text_padding=2
|
115 |
+
)
|
116 |
+
|
117 |
+
def detect_and_annotate(
|
118 |
+
image: np.ndarray,
|
119 |
+
model_name: str,
|
120 |
+
conf_threshold: float,
|
121 |
+
iou_threshold: float,
|
122 |
+
simplify_polygons_option: bool
|
123 |
+
) -> np.ndarray:
|
124 |
+
# Get the selected model
|
125 |
+
model = models[model_name]
|
126 |
+
|
127 |
+
# Perform inference
|
128 |
+
results = model.predict(
|
129 |
+
image,
|
130 |
+
conf=conf_threshold,
|
131 |
+
iou=iou_threshold
|
132 |
+
)[0]
|
133 |
+
|
134 |
+
# Convert results to supervision Detections
|
135 |
+
boxes = results.boxes.xyxy.cpu().numpy()
|
136 |
+
confidence = results.boxes.conf.cpu().numpy()
|
137 |
+
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
138 |
+
|
139 |
+
# Handle masks if they exist
|
140 |
+
masks = None
|
141 |
+
if results.masks is not None:
|
142 |
+
masks = results.masks.data.cpu().numpy()
|
143 |
+
# Convert from (N,H,W) to (H,W,N) for processing
|
144 |
+
masks = np.transpose(masks, (1, 2, 0))
|
145 |
+
h, w = image.shape[:2]
|
146 |
+
resized_masks = []
|
147 |
+
for i in range(masks.shape[-1]):
|
148 |
+
resized_mask = cv2.resize(masks[..., i], (w, h), interpolation=cv2.INTER_LINEAR)
|
149 |
+
resized_masks.append(resized_mask > 0.5)
|
150 |
+
masks = np.stack(resized_masks) if resized_masks else None
|
151 |
+
|
152 |
+
# Create Detections object
|
153 |
+
detections = sv.Detections(
|
154 |
+
xyxy=boxes,
|
155 |
+
confidence=confidence,
|
156 |
+
class_id=class_ids,
|
157 |
+
mask=masks
|
158 |
+
)
|
159 |
+
|
160 |
+
# Create labels with confidence scores
|
161 |
+
labels = [
|
162 |
+
f"{results.names[class_id]} ({conf:.2f})"
|
163 |
+
for class_id, conf
|
164 |
+
in zip(class_ids, confidence)
|
165 |
+
]
|
166 |
+
|
167 |
+
# Create mask annotator based on the simplify option
|
168 |
+
mask_annotator = OutlineMaskAnnotator(
|
169 |
+
color=(255, 0, 0),
|
170 |
+
thickness=2,
|
171 |
+
simplify=simplify_polygons_option
|
172 |
+
)
|
173 |
+
|
174 |
+
# Annotate image
|
175 |
+
annotated_image = image.copy()
|
176 |
+
if masks is not None:
|
177 |
+
annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
|
178 |
+
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
|
179 |
+
|
180 |
+
return annotated_image
|
181 |
+
|
182 |
+
# Load models
|
183 |
+
models = load_models()
|
184 |
+
|
185 |
+
# App title
|
186 |
+
st.title("Medieval Manuscript Segmentation with YOLO")
|
187 |
+
|
188 |
+
# Sidebar for controls
|
189 |
+
with st.sidebar:
|
190 |
+
st.header("Detection Settings")
|
191 |
+
|
192 |
+
model_name = st.selectbox(
|
193 |
+
"Model",
|
194 |
+
options=list(MODEL_OPTIONS.keys()),
|
195 |
+
index=0,
|
196 |
+
help="Select YOLO model variant"
|
197 |
+
)
|
198 |
+
|
199 |
+
conf_threshold = st.slider(
|
200 |
+
"Confidence Threshold",
|
201 |
+
min_value=0.0,
|
202 |
+
max_value=1.0,
|
203 |
+
value=0.25,
|
204 |
+
step=0.05,
|
205 |
+
help="Minimum confidence score for detections"
|
206 |
+
)
|
207 |
+
|
208 |
+
iou_threshold = st.slider(
|
209 |
+
"IoU Threshold",
|
210 |
+
min_value=0.0,
|
211 |
+
max_value=1.0,
|
212 |
+
value=0.45,
|
213 |
+
step=0.05,
|
214 |
+
help="Decrease for stricter detection, increase for more overlapping masks"
|
215 |
+
)
|
216 |
+
|
217 |
+
simplify_polygons_option = st.checkbox(
|
218 |
+
"Simplify Polygons",
|
219 |
+
value=False,
|
220 |
+
help="Simplify polygon contours for cleaner outlines"
|
221 |
+
)
|
222 |
+
|
223 |
+
# Main content area
|
224 |
+
col1, col2 = st.columns(2)
|
225 |
+
|
226 |
+
with col1:
|
227 |
+
st.subheader("Input Image")
|
228 |
+
uploaded_file = st.file_uploader(
|
229 |
+
"Upload an image",
|
230 |
+
type=["jpg", "jpeg", "png"],
|
231 |
+
key="file_uploader"
|
232 |
+
)
|
233 |
+
|
234 |
+
if uploaded_file is not None:
|
235 |
+
image = np.array(Image.open(uploaded_file))
|
236 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
237 |
+
else:
|
238 |
+
image = None
|
239 |
+
st.info("Please upload an image file")
|
240 |
+
|
241 |
+
with col2:
|
242 |
+
st.subheader("Detection Result")
|
243 |
+
|
244 |
+
if st.button("Detect", type="primary") and image is not None:
|
245 |
+
with st.spinner("Processing image..."):
|
246 |
+
annotated_image = detect_and_annotate(
|
247 |
+
image,
|
248 |
+
model_name,
|
249 |
+
conf_threshold,
|
250 |
+
iou_threshold,
|
251 |
+
simplify_polygons_option
|
252 |
+
)
|
253 |
+
st.image(annotated_image, caption="Detection Result", use_column_width=True)
|
254 |
+
elif image is None:
|
255 |
+
st.warning("Please upload an image first")
|
256 |
+
else:
|
257 |
+
st.info("Click the Detect button to process the image")
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
supervision
|
3 |
+
huggingface-hub
|
4 |
+
ultralytics
|
5 |
+
opencv-python
|
6 |
+
numpy
|
7 |
+
Pillow
|
8 |
+
torch
|
9 |
+
torchvision
|