Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import os | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
import random | |
import warnings | |
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers.utils.import_utils import is_invisible_watermark_available | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import ( | |
FromSingleFileMixin, | |
LoraLoaderMixin, | |
TextualInversionLoaderMixin, | |
) | |
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel | |
from diffusers.models.attention_processor import ( | |
AttnProcessor2_0, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
XFormersAttnProcessor, | |
) | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
is_accelerate_available, | |
is_accelerate_version, | |
logging, | |
replace_example_docstring, | |
) | |
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
if is_invisible_watermark_available(): | |
from diffusers.pipelines.stable_diffusion_xl.watermark import ( | |
StableDiffusionXLWatermarker, | |
) | |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
""" | |
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3): | |
x_coord = torch.arange(kernel_size) | |
gaussian_1d = torch.exp( | |
-((x_coord - (kernel_size - 1) / 2) ** 2) / (2 * sigma**2) | |
) | |
gaussian_1d = gaussian_1d / gaussian_1d.sum() | |
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :] | |
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1) | |
return kernel | |
def gaussian_filter(latents, kernel_size=3, sigma=1.0): | |
channels = latents.shape[1] | |
kernel = gaussian_kernel(kernel_size, sigma, channels).to( | |
latents.device, latents.dtype | |
) | |
blurred_latents = F.conv2d( | |
latents, kernel, padding=kernel_size // 2, groups=channels | |
) | |
return blurred_latents | |
class DemoFusionSDXLControlNetPipeline( | |
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin | |
): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): | |
Second frozen text-encoder | |
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
tokenizer_2 ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): | |
Provides additional conditioning to the `unet` during the denoising process. If you set multiple | |
ControlNets as a list, the outputs from each ControlNet are added together to create one combined | |
additional conditioning. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | |
Whether the negative prompt embeddings should always be set to 0. Also see the config of | |
`stabilityai/stable-diffusion-xl-base-1-0`. | |
add_watermarker (`bool`, *optional*): | |
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to | |
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no | |
watermarker is used. | |
""" | |
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" # leave controlnet out on purpose because it iterates with unet | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
text_encoder_2: CLIPTextModelWithProjection, | |
tokenizer: CLIPTokenizer, | |
tokenizer_2: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: Union[ | |
ControlNetModel, | |
List[ControlNetModel], | |
Tuple[ControlNetModel], | |
MultiControlNetModel, | |
], | |
scheduler: KarrasDiffusionSchedulers, | |
force_zeros_for_empty_prompt: bool = True, | |
add_watermarker: Optional[bool] = None, | |
): | |
super().__init__() | |
if isinstance(controlnet, (list, tuple)): | |
controlnet = MultiControlNetModel(controlnet) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True | |
) | |
self.control_image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, | |
do_convert_rgb=True, | |
do_normalize=False, | |
) | |
add_watermarker = ( | |
add_watermarker | |
if add_watermarker is not None | |
else is_invisible_watermark_available() | |
) | |
if add_watermarker: | |
self.watermark = StableDiffusionXLWatermarker() | |
else: | |
self.watermark = None | |
self.register_to_config( | |
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.vae.enable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt: str, | |
prompt_2: Optional[str] = None, | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: Optional[str] = None, | |
negative_prompt_2: Optional[str] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
device = device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# Define tokenizers and text encoders | |
tokenizers = ( | |
[self.tokenizer, self.tokenizer_2] | |
if self.tokenizer is not None | |
else [self.tokenizer_2] | |
) | |
text_encoders = ( | |
[self.text_encoder, self.text_encoder_2] | |
if self.text_encoder is not None | |
else [self.text_encoder_2] | |
) | |
if prompt_embeds is None: | |
prompt_2 = prompt_2 or prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
prompt_embeds_list = [] | |
prompts = [prompt, prompt_2] | |
for prompt, tokenizer, text_encoder in zip( | |
prompts, tokenizers, text_encoders | |
): | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
-1 | |
] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = tokenizer.batch_decode( | |
untruncated_ids[:, tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
prompt_embeds = text_encoder( | |
text_input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
# get unconditional embeddings for classifier free guidance | |
zero_out_negative_prompt = ( | |
negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
) | |
if ( | |
do_classifier_free_guidance | |
and negative_prompt_embeds is None | |
and zero_out_negative_prompt | |
): | |
negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
negative_prompt_2 = negative_prompt_2 or negative_prompt | |
uncond_tokens: List[str] | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt, negative_prompt_2] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = [negative_prompt, negative_prompt_2] | |
negative_prompt_embeds_list = [] | |
for negative_prompt, tokenizer, text_encoder in zip( | |
uncond_tokens, tokenizers, text_encoders | |
): | |
if isinstance(self, TextualInversionLoaderMixin): | |
negative_prompt = self.maybe_convert_prompt( | |
negative_prompt, tokenizer | |
) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = tokenizer( | |
negative_prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
negative_prompt_embeds_list.append(negative_prompt_embeds) | |
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_images_per_prompt, seq_len, -1 | |
) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to( | |
dtype=self.text_encoder_2.dtype, device=device | |
) | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_images_per_prompt, 1 | |
) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
pooled_prompt_embeds = pooled_prompt_embeds.repeat( | |
1, num_images_per_prompt | |
).view(bs_embed * num_images_per_prompt, -1) | |
if do_classifier_free_guidance: | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat( | |
1, num_images_per_prompt | |
).view(bs_embed * num_images_per_prompt, -1) | |
return ( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
prompt_2, | |
image, | |
callback_steps, | |
negative_prompt=None, | |
negative_prompt_2=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
controlnet_conditioning_scale=1.0, | |
control_guidance_start=0.0, | |
control_guidance_end=1.0, | |
): | |
if (callback_steps is None) or ( | |
callback_steps is not None | |
and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt_2 is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and ( | |
not isinstance(prompt, str) and not isinstance(prompt, list) | |
): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
elif prompt_2 is not None and ( | |
not isinstance(prompt_2, str) and not isinstance(prompt_2, list) | |
): | |
raise ValueError( | |
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_embeds is not None and pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
) | |
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
) | |
# `prompt` needs more sophisticated handling when there are multiple | |
# conditionings. | |
if isinstance(self.controlnet, MultiControlNetModel): | |
if isinstance(prompt, list): | |
logger.warning( | |
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" | |
" prompts. The conditionings will be fixed across the prompts." | |
) | |
# Check `image` | |
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
self.controlnet, torch._dynamo.eval_frame.OptimizedModule | |
) | |
if ( | |
isinstance(self.controlnet, ControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
): | |
self.check_image(image, prompt, prompt_embeds) | |
elif ( | |
isinstance(self.controlnet, MultiControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
): | |
if not isinstance(image, list): | |
raise TypeError("For multiple controlnets: `image` must be type `list`") | |
# When `image` is a nested list: | |
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) | |
elif any(isinstance(i, list) for i in image): | |
raise ValueError( | |
"A single batch of multiple conditionings are supported at the moment." | |
) | |
elif len(image) != len(self.controlnet.nets): | |
raise ValueError( | |
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." | |
) | |
for image_ in image: | |
self.check_image(image_, prompt, prompt_embeds) | |
else: | |
assert False | |
# Check `controlnet_conditioning_scale` | |
if ( | |
isinstance(self.controlnet, ControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
): | |
if not isinstance(controlnet_conditioning_scale, float): | |
raise TypeError( | |
"For single controlnet: `controlnet_conditioning_scale` must be type `float`." | |
) | |
elif ( | |
isinstance(self.controlnet, MultiControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
): | |
if isinstance(controlnet_conditioning_scale, list): | |
if any(isinstance(i, list) for i in controlnet_conditioning_scale): | |
raise ValueError( | |
"A single batch of multiple conditionings are supported at the moment." | |
) | |
elif isinstance(controlnet_conditioning_scale, list) and len( | |
controlnet_conditioning_scale | |
) != len(self.controlnet.nets): | |
raise ValueError( | |
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | |
" the same length as the number of controlnets" | |
) | |
else: | |
assert False | |
if not isinstance(control_guidance_start, (tuple, list)): | |
control_guidance_start = [control_guidance_start] | |
if not isinstance(control_guidance_end, (tuple, list)): | |
control_guidance_end = [control_guidance_end] | |
if len(control_guidance_start) != len(control_guidance_end): | |
raise ValueError( | |
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | |
) | |
if isinstance(self.controlnet, MultiControlNetModel): | |
if len(control_guidance_start) != len(self.controlnet.nets): | |
raise ValueError( | |
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." | |
) | |
for start, end in zip(control_guidance_start, control_guidance_end): | |
if start >= end: | |
raise ValueError( | |
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | |
) | |
if start < 0.0: | |
raise ValueError( | |
f"control guidance start: {start} can't be smaller than 0." | |
) | |
if end > 1.0: | |
raise ValueError( | |
f"control guidance end: {end} can't be larger than 1.0." | |
) | |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image | |
def check_image(self, image, prompt, prompt_embeds): | |
image_is_pil = isinstance(image, PIL.Image.Image) | |
image_is_tensor = isinstance(image, torch.Tensor) | |
image_is_np = isinstance(image, np.ndarray) | |
image_is_pil_list = isinstance(image, list) and isinstance( | |
image[0], PIL.Image.Image | |
) | |
image_is_tensor_list = isinstance(image, list) and isinstance( | |
image[0], torch.Tensor | |
) | |
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | |
if ( | |
not image_is_pil | |
and not image_is_tensor | |
and not image_is_np | |
and not image_is_pil_list | |
and not image_is_tensor_list | |
and not image_is_np_list | |
): | |
raise TypeError( | |
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | |
) | |
if image_is_pil: | |
image_batch_size = 1 | |
else: | |
image_batch_size = len(image) | |
if prompt is not None and isinstance(prompt, str): | |
prompt_batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
prompt_batch_size = len(prompt) | |
elif prompt_embeds is not None: | |
prompt_batch_size = prompt_embeds.shape[0] | |
if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image | |
def prepare_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
guess_mode=False, | |
): | |
image = self.control_image_processor.preprocess( | |
image, height=height, width=width | |
).to(dtype=torch.float32) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance and not guess_mode: | |
image = torch.cat([image] * 2) | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids | |
def _get_add_time_ids( | |
self, original_size, crops_coords_top_left, target_size, dtype | |
): | |
add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
passed_add_embed_dim = ( | |
self.unet.config.addition_time_embed_dim * len(add_time_ids) | |
+ self.text_encoder_2.config.projection_dim | |
) | |
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
if expected_add_embed_dim != passed_add_embed_dim: | |
raise ValueError( | |
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
) | |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
return add_time_ids | |
def get_views(self, height, width, window_size=128, stride=64, random_jitter=False): | |
# Here, we define the mappings F_i (see Eq. 7 in the MultiDiffusion paper https://arxiv.org/abs/2302.08113) | |
# if panorama's height/width < window_size, num_blocks of height/width should return 1 | |
height //= self.vae_scale_factor | |
width //= self.vae_scale_factor | |
num_blocks_height = ( | |
int((height - window_size) / stride - 1e-6) + 2 | |
if height > window_size | |
else 1 | |
) | |
num_blocks_width = ( | |
int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1 | |
) | |
total_num_blocks = int(num_blocks_height * num_blocks_width) | |
views = [] | |
for i in range(total_num_blocks): | |
h_start = int((i // num_blocks_width) * stride) | |
h_end = h_start + window_size | |
w_start = int((i % num_blocks_width) * stride) | |
w_end = w_start + window_size | |
if h_end > height: | |
h_start = int(h_start + height - h_end) | |
h_end = int(height) | |
if w_end > width: | |
w_start = int(w_start + width - w_end) | |
w_end = int(width) | |
if h_start < 0: | |
h_end = int(h_end - h_start) | |
h_start = 0 | |
if w_start < 0: | |
w_end = int(w_end - w_start) | |
w_start = 0 | |
if random_jitter: | |
jitter_range = (window_size - stride) // 4 | |
w_jitter = 0 | |
h_jitter = 0 | |
if (w_start != 0) and (w_end != width): | |
w_jitter = random.randint(-jitter_range, jitter_range) | |
elif (w_start == 0) and (w_end != width): | |
w_jitter = random.randint(-jitter_range, 0) | |
elif (w_start != 0) and (w_end == width): | |
w_jitter = random.randint(0, jitter_range) | |
if (h_start != 0) and (h_end != height): | |
h_jitter = random.randint(-jitter_range, jitter_range) | |
elif (h_start == 0) and (h_end != height): | |
h_jitter = random.randint(-jitter_range, 0) | |
elif (h_start != 0) and (h_end == height): | |
h_jitter = random.randint(0, jitter_range) | |
h_start += h_jitter + jitter_range | |
h_end += h_jitter + jitter_range | |
w_start += w_jitter + jitter_range | |
w_end += w_jitter + jitter_range | |
views.append((h_start, h_end, w_start, w_end)) | |
return views | |
def tiled_decode(self, latents, current_height, current_width): | |
sample_size = self.unet.config.sample_size | |
core_size = self.unet.config.sample_size // 4 | |
core_stride = core_size | |
pad_size = self.unet.config.sample_size // 8 * 3 | |
decoder_view_batch_size = 1 | |
if self.lowvram: | |
core_stride = core_size // 2 | |
pad_size = core_size | |
views = self.get_views( | |
current_height, current_width, stride=core_stride, window_size=core_size | |
) | |
views_batch = [ | |
views[i : i + decoder_view_batch_size] | |
for i in range(0, len(views), decoder_view_batch_size) | |
] | |
latents_ = F.pad( | |
latents, (pad_size, pad_size, pad_size, pad_size), "constant", 0 | |
) | |
image = torch.zeros(latents.size(0), 3, current_height, current_width).to( | |
latents.device | |
) | |
count = torch.zeros_like(image).to(latents.device) | |
# get the latents corresponding to the current view coordinates | |
with self.progress_bar(total=len(views_batch)) as progress_bar: | |
for j, batch_view in enumerate(views_batch): | |
vb_size = len(batch_view) | |
latents_for_view = torch.cat( | |
[ | |
latents_[ | |
:, | |
:, | |
h_start : h_end + pad_size * 2, | |
w_start : w_end + pad_size * 2, | |
] | |
for h_start, h_end, w_start, w_end in batch_view | |
] | |
).to(self.vae.device) | |
image_patch = self.vae.decode( | |
latents_for_view / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
h_start, h_end, w_start, w_end = views[j] | |
h_start, h_end, w_start, w_end = ( | |
h_start * self.vae_scale_factor, | |
h_end * self.vae_scale_factor, | |
w_start * self.vae_scale_factor, | |
w_end * self.vae_scale_factor, | |
) | |
p_h_start, p_h_end, p_w_start, p_w_end = ( | |
pad_size * self.vae_scale_factor, | |
image_patch.size(2) - pad_size * self.vae_scale_factor, | |
pad_size * self.vae_scale_factor, | |
image_patch.size(3) - pad_size * self.vae_scale_factor, | |
) | |
image[:, :, h_start:h_end, w_start:w_end] += image_patch[ | |
:, :, p_h_start:p_h_end, p_w_start:p_w_end | |
].to(latents.device) | |
count[:, :, h_start:h_end, w_start:w_end] += 1 | |
progress_bar.update() | |
image = image / count | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae | |
def upcast_vae(self): | |
dtype = self.vae.dtype | |
self.vae.to(dtype=torch.float32) | |
use_torch_2_0_or_xformers = isinstance( | |
self.vae.decoder.mid_block.attentions[0].processor, | |
( | |
AttnProcessor2_0, | |
XFormersAttnProcessor, | |
LoRAXFormersAttnProcessor, | |
LoRAAttnProcessor2_0, | |
), | |
) | |
# if xformers or torch_2_0 is used attention block does not need | |
# to be in float32 which can save lots of memory | |
if use_torch_2_0_or_xformers: | |
self.vae.post_quant_conv.to(dtype) | |
self.vae.decoder.conv_in.to(dtype) | |
self.vae.decoder.mid_block.to(dtype) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
condition_image: PipelineImageInput = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
guess_mode: bool = False, | |
control_guidance_start: Union[float, List[float]] = 0.0, | |
control_guidance_end: Union[float, List[float]] = 1.0, | |
original_size: Tuple[int, int] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Tuple[int, int] = None, | |
negative_original_size: Optional[Tuple[int, int]] = None, | |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
negative_target_size: Optional[Tuple[int, int]] = None, | |
################### DemoFusion specific parameters #################### | |
image_lr: Optional[torch.FloatTensor] = None, | |
view_batch_size: int = 16, | |
multi_decoder: bool = True, | |
stride: Optional[int] = 64, | |
cosine_scale_1: Optional[float] = 3.0, | |
cosine_scale_2: Optional[float] = 1.0, | |
cosine_scale_3: Optional[float] = 1.0, | |
sigma: Optional[float] = 1.0, | |
show_image: bool = False, | |
lowvram: bool = False, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | |
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be | |
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height | |
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | |
`init`, images must be passed as a list such that each element of the list can be correctly batched for | |
input to a single ControlNet. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` | |
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, pooled text embeddings are generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt | |
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set | |
the corresponding scale as a list. | |
guess_mode (`bool`, *optional*, defaults to `False`): | |
The ControlNet encoder tries to recognize the content of the input image even if you remove all | |
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. | |
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
The percentage of total steps at which the ControlNet starts applying. | |
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The percentage of total steps at which the ControlNet stops applying. | |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | |
explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | |
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
To negatively condition the generation process based on a specific image resolution. Part of SDXL's | |
micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's | |
micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
To negatively condition the generation process based on a target image resolution. It should be as same | |
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
################### DemoFusion specific parameters #################### | |
image_lr (`torch.FloatTensor`, *optional*, , defaults to None): | |
Low-resolution image input for upscaling. If provided, DemoFusion will encode it as the initial latent representation. | |
view_batch_size (`int`, defaults to 16): | |
The batch size for multiple denoising paths. Typically, a larger batch size can result in higher | |
efficiency but comes with increased GPU memory requirements. | |
multi_decoder (`bool`, defaults to True): | |
Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072, | |
a tiled decoder becomes necessary. | |
stride (`int`, defaults to 64): | |
The stride of moving local patches. A smaller stride is better for alleviating seam issues, | |
but it also introduces additional computational overhead and inference time. | |
cosine_scale_1 (`float`, defaults to 3): | |
Control the strength of skip-residual. For specific impacts, please refer to Appendix C | |
in the DemoFusion paper. | |
cosine_scale_2 (`float`, defaults to 1): | |
Control the strength of dilated sampling. For specific impacts, please refer to Appendix C | |
in the DemoFusion paper. | |
cosine_scale_3 (`float`, defaults to 1): | |
Control the strength of the gaussion filter. For specific impacts, please refer to Appendix C | |
in the DemoFusion paper. | |
sigma (`float`, defaults to 1): | |
The standard value of the gaussian filter. | |
show_image (`bool`, defaults to False): | |
Determine whether to show intermediate results during generation. | |
lowvram (`bool`, defaults to False): | |
Try to fit in 8 Gb of VRAM, with xformers installed. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned containing the output images. | |
""" | |
controlnet = ( | |
self.controlnet._orig_mod | |
if is_compiled_module(self.controlnet) | |
else self.controlnet | |
) | |
# align format for control guidance | |
if not isinstance(control_guidance_start, list) and isinstance( | |
control_guidance_end, list | |
): | |
control_guidance_start = len(control_guidance_end) * [ | |
control_guidance_start | |
] | |
elif not isinstance(control_guidance_end, list) and isinstance( | |
control_guidance_start, list | |
): | |
control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
elif not isinstance(control_guidance_start, list) and not isinstance( | |
control_guidance_end, list | |
): | |
mult = ( | |
len(controlnet.nets) | |
if isinstance(controlnet, MultiControlNetModel) | |
else 1 | |
) | |
control_guidance_start, control_guidance_end = mult * [ | |
control_guidance_start | |
], mult * [control_guidance_end] | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
x1_size = self.unet.config.sample_size * self.vae_scale_factor | |
height_scale = height / x1_size | |
width_scale = width / x1_size | |
scale_num = int(max(height_scale, width_scale)) | |
aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale) | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
condition_image, | |
callback_steps, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
controlnet_conditioning_scale, | |
control_guidance_start, | |
control_guidance_end, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
self.lowvram = lowvram | |
if self.lowvram: | |
self.vae.cpu() | |
self.unet.cpu() | |
self.text_encoder.to(device) | |
self.text_encoder_2.to(device) | |
image_lr.cpu() | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
if isinstance(controlnet, MultiControlNetModel) and isinstance( | |
controlnet_conditioning_scale, float | |
): | |
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len( | |
controlnet.nets | |
) | |
global_pool_conditions = ( | |
controlnet.config.global_pool_conditions | |
if isinstance(controlnet, ControlNetModel) | |
else controlnet.nets[0].config.global_pool_conditions | |
) | |
guess_mode = guess_mode or global_pool_conditions | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) | |
if cross_attention_kwargs is not None | |
else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt, | |
prompt_2, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare image | |
if isinstance(controlnet, ControlNetModel): | |
condition_image = self.prepare_image( | |
image=condition_image, | |
width=width // scale_num, | |
height=height // scale_num, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
# height, width = condition_image.shape[-2:] | |
# condition_image.shape ([2, 3, 1024, 1024]) | |
elif isinstance(controlnet, MultiControlNetModel): | |
condition_images = [] | |
for image_ in condition_image: | |
image_ = self.prepare_image( | |
image=image_, | |
width=width // scale_num, | |
height=height // scale_num, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=controlnet.dtype, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
guess_mode=guess_mode, | |
) | |
condition_images.append(image_) | |
condition_image = condition_images | |
# height, width = condition_image[0].shape[-2:] | |
else: | |
assert False | |
# 5. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height // scale_num, | |
width // scale_num, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7.1 Create tensor stating which controlnets to keep | |
controlnet_keep = [] | |
for i in range(len(timesteps)): | |
keeps = [ | |
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
for s, e in zip(control_guidance_start, control_guidance_end) | |
] | |
controlnet_keep.append( | |
keeps[0] if isinstance(controlnet, ControlNetModel) else keeps | |
) | |
# 7.2 Prepare added time ids & embeddings | |
if isinstance(condition_image, list): | |
original_size = original_size or condition_image[0].shape[-2:] | |
else: | |
original_size = original_size or condition_image.shape[-2:] | |
target_size = target_size or (height, width) | |
add_text_embeds = pooled_prompt_embeds | |
add_time_ids = self._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype | |
) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_add_time_ids = self._get_add_time_ids( | |
negative_original_size, | |
negative_crops_coords_top_left, | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
) | |
else: | |
negative_add_time_ids = add_time_ids | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat( | |
[negative_pooled_prompt_embeds, add_text_embeds], dim=0 | |
) | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat( | |
batch_size * num_images_per_prompt, 1 | |
) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
output_images = [] | |
###################################################### Phase Initialization ######################################################## | |
if self.lowvram: | |
self.text_encoder.cpu() | |
self.text_encoder_2.cpu() | |
if image_lr == None: | |
print("### Phase 1 Denoising ###") | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.lowvram: | |
self.vae.cpu() | |
self.unet.to(device) | |
latents_for_view = latents | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
latents.repeat_interleave(2, dim=0) | |
if do_classifier_free_guidance | |
else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
added_cond_kwargs = { | |
"text_embeds": add_text_embeds, | |
"time_ids": add_time_ids, | |
} | |
# controlnet(s) inference | |
if guess_mode and do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
control_model_input = latents | |
control_model_input = self.scheduler.scale_model_input( | |
control_model_input, t | |
) | |
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
controlnet_added_cond_kwargs = { | |
"text_embeds": add_text_embeds.chunk(2)[1], | |
"time_ids": add_time_ids.chunk(2)[1], | |
} | |
else: | |
control_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds | |
controlnet_added_cond_kwargs = added_cond_kwargs | |
if isinstance(controlnet_keep[i], list): | |
cond_scale = [ | |
c * s | |
for c, s in zip( | |
controlnet_conditioning_scale, controlnet_keep[i] | |
) | |
] | |
else: | |
controlnet_cond_scale = controlnet_conditioning_scale | |
if isinstance(controlnet_cond_scale, list): | |
controlnet_cond_scale = controlnet_cond_scale[0] | |
cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
# print(condition_image.shape, control_model_input.shape, controlnet_prompt_embeds.shape, t, cond_scale, guess_mode) | |
# print(controlnet_added_cond_kwargs["text_embeds"].shape, controlnet_added_cond_kwargs["time_ids"].shape) | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
control_model_input, | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=condition_image, | |
conditioning_scale=cond_scale, | |
guess_mode=guess_mode, | |
added_cond_kwargs=controlnet_added_cond_kwargs, | |
return_dict=False, | |
) | |
if guess_mode and do_classifier_free_guidance: | |
# Infered ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [ | |
torch.cat([torch.zeros_like(d), d]) | |
for d in down_block_res_samples | |
] | |
mid_block_res_sample = torch.cat( | |
[ | |
torch.zeros_like(mid_block_res_sample), | |
mid_block_res_sample, | |
] | |
) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = ( | |
noise_pred[::2], | |
noise_pred[1::2], | |
) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps | |
and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
else: | |
print("### Encoding Real Image ###") | |
latents = self.vae.encode(image_lr) | |
latents = latents.latent_dist.sample() * self.vae.config.scaling_factor | |
anchor_mean = latents.mean() | |
anchor_std = latents.std() | |
if self.lowvram: | |
latents = latents.cpu() | |
torch.cuda.empty_cache() | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = ( | |
self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
) | |
if self.lowvram: | |
needs_upcasting = ( | |
False # use madebyollin/sdxl-vae-fp16-fix in lowvram mode! | |
) | |
self.unet.cpu() | |
self.vae.to(device) | |
if needs_upcasting: | |
self.upcast_vae() | |
latents = latents.to( | |
next(iter(self.vae.post_quant_conv.parameters())).dtype | |
) | |
if self.lowvram and multi_decoder: | |
current_width_height = ( | |
self.unet.config.sample_size * self.vae_scale_factor | |
) | |
image = self.tiled_decode( | |
latents, current_width_height, current_width_height | |
) | |
else: | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
self.vae.to(dtype=torch.float16) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if show_image: | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(image[0]) | |
plt.axis("off") # Turn off axis numbers and ticks | |
plt.show() | |
output_images.append(image[0]) | |
####################################################### Phase Upscaling ##################################################### | |
if image_lr == None: | |
starting_scale = 2 | |
else: | |
starting_scale = 1 | |
for current_scale_num in range(starting_scale, scale_num + 1): | |
if self.lowvram: | |
latents = latents.to(device) | |
self.unet.to(device) | |
torch.cuda.empty_cache() | |
print("### Phase {} Denoising ###".format(current_scale_num)) | |
current_height = ( | |
self.unet.config.sample_size * self.vae_scale_factor * current_scale_num | |
) | |
current_width = ( | |
self.unet.config.sample_size * self.vae_scale_factor * current_scale_num | |
) | |
if height > width: | |
current_width = int(current_width * aspect_ratio) | |
else: | |
current_height = int(current_height * aspect_ratio) | |
latents = F.interpolate( | |
latents, | |
size=( | |
int(current_height / self.vae_scale_factor), | |
int(current_width / self.vae_scale_factor), | |
), | |
mode="bicubic", | |
) | |
condition_image = F.interpolate( | |
condition_image, size=(current_height, current_width), mode="bicubic" | |
) | |
noise_latents = [] | |
noise = torch.randn_like(latents) | |
for timestep in timesteps: | |
noise_latent = self.scheduler.add_noise( | |
latents, noise, timestep.unsqueeze(0) | |
) | |
noise_latents.append(noise_latent) | |
latents = noise_latents[0] | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
count = torch.zeros_like(latents) | |
value = torch.zeros_like(latents) | |
cosine_factor = ( | |
0.5 | |
* ( | |
1 | |
+ torch.cos( | |
torch.pi | |
* (self.scheduler.config.num_train_timesteps - t) | |
/ self.scheduler.config.num_train_timesteps | |
) | |
).cpu() | |
) | |
c1 = cosine_factor**cosine_scale_1 | |
latents = latents * (1 - c1) + noise_latents[i] * c1 | |
############################################# MultiDiffusion ############################################# | |
views = self.get_views( | |
current_height, | |
current_width, | |
stride=stride, | |
window_size=self.unet.config.sample_size, | |
random_jitter=True, | |
) | |
views_batch = [ | |
views[i : i + view_batch_size] | |
for i in range(0, len(views), view_batch_size) | |
] | |
jitter_range = (self.unet.config.sample_size - stride) // 4 | |
latents_ = F.pad( | |
latents, | |
(jitter_range, jitter_range, jitter_range, jitter_range), | |
"constant", | |
0, | |
) | |
condition_image_ = F.pad( | |
condition_image, | |
( | |
jitter_range * self.vae_scale_factor, | |
jitter_range * self.vae_scale_factor, | |
jitter_range * self.vae_scale_factor, | |
jitter_range * self.vae_scale_factor, | |
), | |
"constant", | |
0, | |
) | |
count_local = torch.zeros_like(latents_) | |
value_local = torch.zeros_like(latents_) | |
for j, batch_view in enumerate(views_batch): | |
vb_size = len(batch_view) | |
# get the latents corresponding to the current view coordinates | |
latents_for_view = torch.cat( | |
[ | |
latents_[:, :, h_start:h_end, w_start:w_end] | |
for h_start, h_end, w_start, w_end in batch_view | |
] | |
) | |
condition_image_for_view = torch.cat( | |
[ | |
condition_image_[ | |
0:1, | |
:, | |
h_start | |
* self.vae_scale_factor : h_end | |
* self.vae_scale_factor, | |
w_start | |
* self.vae_scale_factor : w_end | |
* self.vae_scale_factor, | |
] | |
for h_start, h_end, w_start, w_end in batch_view | |
] | |
) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = latents_for_view | |
latent_model_input = ( | |
latent_model_input.repeat_interleave(2, dim=0) | |
if do_classifier_free_guidance | |
else latent_model_input | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
condition_image_input = condition_image_for_view | |
condition_image_input = ( | |
condition_image_input.repeat_interleave(2, dim=0) | |
if do_classifier_free_guidance | |
else condition_image_input | |
) | |
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) | |
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size) | |
add_time_ids_input = [] | |
for h_start, h_end, w_start, w_end in batch_view: | |
add_time_ids_ = add_time_ids.clone() | |
add_time_ids_[:, 2] = h_start * self.vae_scale_factor | |
add_time_ids_[:, 3] = w_start * self.vae_scale_factor | |
add_time_ids_input.append(add_time_ids_) | |
add_time_ids_input = torch.cat(add_time_ids_input) | |
added_cond_kwargs = { | |
"text_embeds": add_text_embeds_input, | |
"time_ids": add_time_ids_input, | |
} | |
# controlnet(s) inference | |
if guess_mode and do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
control_model_input = latent_model_input | |
control_model_input = self.scheduler.scale_model_input( | |
control_model_input, t | |
) | |
controlnet_prompt_embeds = prompt_embeds_input.chunk(2)[1] | |
controlnet_added_cond_kwargs = { | |
"text_embeds": add_text_embeds_input.chunk(2)[1], | |
"time_ids": add_time_ids_input.chunk(2)[1], | |
} | |
else: | |
control_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds_input | |
controlnet_added_cond_kwargs = added_cond_kwargs | |
if isinstance(controlnet_keep[i], list): | |
cond_scale = [ | |
c * s | |
for c, s in zip( | |
controlnet_conditioning_scale, controlnet_keep[i] | |
) | |
] | |
else: | |
controlnet_cond_scale = controlnet_conditioning_scale | |
if isinstance(controlnet_cond_scale, list): | |
controlnet_cond_scale = controlnet_cond_scale[0] | |
cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
control_model_input, | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=condition_image_input, | |
conditioning_scale=cond_scale, | |
guess_mode=guess_mode, | |
added_cond_kwargs=controlnet_added_cond_kwargs, | |
return_dict=False, | |
) | |
if guess_mode and do_classifier_free_guidance: | |
# Infered ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [ | |
torch.cat([torch.zeros_like(d), d]) | |
for d in down_block_res_samples | |
] | |
mid_block_res_sample = torch.cat( | |
[ | |
torch.zeros_like(mid_block_res_sample), | |
mid_block_res_sample, | |
] | |
) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds_input, | |
cross_attention_kwargs=cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = ( | |
noise_pred[::2], | |
noise_pred[1::2], | |
) | |
noise_pred = ( | |
noise_pred_uncond | |
+ guidance_scale | |
* (noise_pred_text - noise_pred_uncond) | |
* 1 | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
self.scheduler._init_step_index(t) | |
latents_denoised_batch = self.scheduler.step( | |
noise_pred, | |
t, | |
latents_for_view, | |
**extra_step_kwargs, | |
return_dict=False, | |
)[0] | |
# extract value from batch | |
for latents_view_denoised, ( | |
h_start, | |
h_end, | |
w_start, | |
w_end, | |
) in zip(latents_denoised_batch.chunk(vb_size), batch_view): | |
value_local[ | |
:, :, h_start:h_end, w_start:w_end | |
] += latents_view_denoised | |
count_local[:, :, h_start:h_end, w_start:w_end] += 1 | |
value_local = value_local[ | |
:, | |
:, | |
jitter_range : jitter_range | |
+ current_height // self.vae_scale_factor, | |
jitter_range : jitter_range | |
+ current_width // self.vae_scale_factor, | |
] | |
count_local = count_local[ | |
:, | |
:, | |
jitter_range : jitter_range | |
+ current_height // self.vae_scale_factor, | |
jitter_range : jitter_range | |
+ current_width // self.vae_scale_factor, | |
] | |
c2 = cosine_factor**cosine_scale_2 | |
value += value_local / count_local * (1 - c2) | |
count += torch.ones_like(value_local) * (1 - c2) | |
############################################# Dilated Sampling ############################################# | |
h_pad = ( | |
current_scale_num - (latents.size(2) % current_scale_num) | |
) % current_scale_num | |
w_pad = ( | |
current_scale_num - (latents.size(3) % current_scale_num) | |
) % current_scale_num | |
latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), "constant", 0) | |
count_global = torch.zeros_like(latents_) | |
value_global = torch.zeros_like(latents_) | |
c3 = 0.99 * cosine_factor**cosine_scale_3 + 1e-2 | |
std_, mean_ = latents_.std(), latents_.mean() | |
latents_gaussian = gaussian_filter( | |
latents_, | |
kernel_size=(2 * current_scale_num - 1), | |
sigma=sigma * c3, | |
) | |
latents_gaussian = ( | |
latents_gaussian - latents_gaussian.mean() | |
) / latents_gaussian.std() * std_ + mean_ | |
latents_for_view = [] | |
for h in range(current_scale_num): | |
for w in range(current_scale_num): | |
latents_for_view.append( | |
latents_[ | |
:, :, h::current_scale_num, w::current_scale_num | |
] | |
) | |
latents_for_view = torch.cat(latents_for_view) | |
latents_for_view_gaussian = [] | |
for h in range(current_scale_num): | |
for w in range(current_scale_num): | |
latents_for_view_gaussian.append( | |
latents_gaussian[ | |
:, :, h::current_scale_num, w::current_scale_num | |
] | |
) | |
latents_for_view_gaussian = torch.cat(latents_for_view_gaussian) | |
condition_image_for_view = [] | |
for h in range(current_scale_num): | |
for w in range(current_scale_num): | |
condition_image_ = F.pad( | |
condition_image, | |
( | |
w_pad * self.vae_scale_factor, | |
w * self.vae_scale_factor, | |
h_pad * self.vae_scale_factor, | |
h * self.vae_scale_factor, | |
), | |
"constant", | |
0, | |
) | |
condition_image_for_view.append( | |
condition_image_[ | |
0:1, | |
:, | |
h * self.vae_scale_factor :: current_scale_num, | |
w * self.vae_scale_factor :: current_scale_num, | |
] | |
) | |
condition_image_for_view = torch.cat(condition_image_for_view) | |
vb_size = latents_for_view.size(0) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = latents_for_view_gaussian | |
latent_model_input = ( | |
latent_model_input.repeat_interleave(2, dim=0) | |
if do_classifier_free_guidance | |
else latent_model_input | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
condition_image_input = condition_image_for_view | |
condition_image_input = ( | |
condition_image_input.repeat_interleave(2, dim=0) | |
if do_classifier_free_guidance | |
else condition_image_input | |
) | |
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) | |
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size) | |
add_time_ids_input = torch.cat([add_time_ids] * vb_size) | |
added_cond_kwargs = { | |
"text_embeds": add_text_embeds_input, | |
"time_ids": add_time_ids_input, | |
} | |
# controlnet(s) inference | |
if guess_mode and do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
control_model_input = latent_model_input | |
control_model_input = self.scheduler.scale_model_input( | |
control_model_input, t | |
) | |
controlnet_prompt_embeds = prompt_embeds_input.chunk(2)[1] | |
controlnet_added_cond_kwargs = { | |
"text_embeds": add_text_embeds_input.chunk(2)[1], | |
"time_ids": add_time_ids_input.chunk(2)[1], | |
} | |
else: | |
control_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds_input | |
controlnet_added_cond_kwargs = added_cond_kwargs | |
if isinstance(controlnet_keep[i], list): | |
cond_scale = [ | |
c * s | |
for c, s in zip( | |
controlnet_conditioning_scale, controlnet_keep[i] | |
) | |
] | |
else: | |
controlnet_cond_scale = controlnet_conditioning_scale | |
if isinstance(controlnet_cond_scale, list): | |
controlnet_cond_scale = controlnet_cond_scale[0] | |
cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
control_model_input, | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=condition_image_input, | |
conditioning_scale=cond_scale, | |
guess_mode=guess_mode, | |
added_cond_kwargs=controlnet_added_cond_kwargs, | |
return_dict=False, | |
) | |
if guess_mode and do_classifier_free_guidance: | |
# Infered ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [ | |
torch.cat([torch.zeros_like(d), d]) | |
for d in down_block_res_samples | |
] | |
mid_block_res_sample = torch.cat( | |
[ | |
torch.zeros_like(mid_block_res_sample), | |
mid_block_res_sample, | |
] | |
) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds_input, | |
cross_attention_kwargs=cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = ( | |
noise_pred[::2], | |
noise_pred[1::2], | |
) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# extract value from batch | |
for h in range(current_scale_num): | |
for w in range(current_scale_num): | |
noise_pred_ = noise_pred.chunk(vb_size)[ | |
h * current_scale_num + w | |
] | |
value_global[ | |
:, :, h::current_scale_num, w::current_scale_num | |
] += noise_pred_ | |
count_global[ | |
:, :, h::current_scale_num, w::current_scale_num | |
] += 1 | |
# compute the previous noisy sample x_t -> x_t-1 | |
self.scheduler._init_step_index(t) | |
value_global = self.scheduler.step( | |
value_global, | |
t, | |
latents_, | |
**extra_step_kwargs, | |
return_dict=False, | |
)[0] | |
c2 = cosine_factor**cosine_scale_2 | |
value_global = value_global[:, :, h_pad:, w_pad:] | |
value += value_global * c2 | |
count += torch.ones_like(value_global) * c2 | |
########################################################### | |
latents = torch.where(count > 0, value / count, value) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps | |
and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
######################################################################################################################################### | |
latents = ( | |
latents - latents.mean() | |
) / latents.std() * anchor_std + anchor_mean | |
if self.lowvram: | |
latents = latents.cpu() | |
torch.cuda.empty_cache() | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = ( | |
self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
) | |
if self.lowvram: | |
needs_upcasting = ( | |
False # use madebyollin/sdxl-vae-fp16-fix in lowvram mode! | |
) | |
self.unet.cpu() | |
self.vae.to(device) | |
if needs_upcasting: | |
self.upcast_vae() | |
latents = latents.to( | |
next(iter(self.vae.post_quant_conv.parameters())).dtype | |
) | |
print("### Phase {} Decoding ###".format(current_scale_num)) | |
if multi_decoder: | |
image = self.tiled_decode( | |
latents, current_height, current_width | |
) | |
else: | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
self.vae.to(dtype=torch.float16) | |
else: | |
image = latents | |
if not output_type == "latent": | |
image = self.image_processor.postprocess( | |
image, output_type=output_type | |
) | |
if show_image: | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(image[0]) | |
plt.axis("off") # Turn off axis numbers and ticks | |
plt.show() | |
output_images.append(image[0]) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
return output_images | |
# Overrride to properly handle the loading and unloading of the additional text encoder. | |
def load_lora_weights( | |
self, | |
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
**kwargs, | |
): | |
# We could have accessed the unet config from `lora_state_dict()` too. We pass | |
# it here explicitly to be able to tell that it's coming from an SDXL | |
# pipeline. | |
# Remove any existing hooks. | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate.hooks import ( | |
AlignDevicesHook, | |
CpuOffload, | |
remove_hook_from_module, | |
) | |
else: | |
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.") | |
is_model_cpu_offload = False | |
is_sequential_cpu_offload = False | |
recursive = False | |
for _, component in self.components.items(): | |
if isinstance(component, torch.nn.Module): | |
if hasattr(component, "_hf_hook"): | |
is_model_cpu_offload = isinstance( | |
getattr(component, "_hf_hook"), CpuOffload | |
) | |
is_sequential_cpu_offload = isinstance( | |
getattr(component, "_hf_hook"), AlignDevicesHook | |
) | |
logger.info( | |
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." | |
) | |
recursive = is_sequential_cpu_offload | |
remove_hook_from_module(component, recurse=recursive) | |
state_dict, network_alphas = self.lora_state_dict( | |
pretrained_model_name_or_path_or_dict, | |
unet_config=self.unet.config, | |
**kwargs, | |
) | |
self.load_lora_into_unet( | |
state_dict, network_alphas=network_alphas, unet=self.unet | |
) | |
text_encoder_state_dict = { | |
k: v for k, v in state_dict.items() if "text_encoder." in k | |
} | |
if len(text_encoder_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_state_dict, | |
network_alphas=network_alphas, | |
text_encoder=self.text_encoder, | |
prefix="text_encoder", | |
lora_scale=self.lora_scale, | |
) | |
text_encoder_2_state_dict = { | |
k: v for k, v in state_dict.items() if "text_encoder_2." in k | |
} | |
if len(text_encoder_2_state_dict) > 0: | |
self.load_lora_into_text_encoder( | |
text_encoder_2_state_dict, | |
network_alphas=network_alphas, | |
text_encoder=self.text_encoder_2, | |
prefix="text_encoder_2", | |
lora_scale=self.lora_scale, | |
) | |
# Offload back. | |
if is_model_cpu_offload: | |
self.enable_model_cpu_offload() | |
elif is_sequential_cpu_offload: | |
self.enable_sequential_cpu_offload() | |
def save_lora_weights( | |
self, | |
save_directory: Union[str, os.PathLike], | |
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
text_encoder_lora_layers: Dict[ | |
str, Union[torch.nn.Module, torch.Tensor] | |
] = None, | |
text_encoder_2_lora_layers: Dict[ | |
str, Union[torch.nn.Module, torch.Tensor] | |
] = None, | |
is_main_process: bool = True, | |
weight_name: str = None, | |
save_function: Callable = None, | |
safe_serialization: bool = True, | |
): | |
state_dict = {} | |
def pack_weights(layers, prefix): | |
layers_weights = ( | |
layers.state_dict() if isinstance(layers, torch.nn.Module) else layers | |
) | |
layers_state_dict = { | |
f"{prefix}.{module_name}": param | |
for module_name, param in layers_weights.items() | |
} | |
return layers_state_dict | |
if not ( | |
unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers | |
): | |
raise ValueError( | |
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." | |
) | |
if unet_lora_layers: | |
state_dict.update(pack_weights(unet_lora_layers, "unet")) | |
if text_encoder_lora_layers and text_encoder_2_lora_layers: | |
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) | |
state_dict.update( | |
pack_weights(text_encoder_2_lora_layers, "text_encoder_2") | |
) | |
self.write_lora_layers( | |
state_dict=state_dict, | |
save_directory=save_directory, | |
is_main_process=is_main_process, | |
weight_name=weight_name, | |
save_function=save_function, | |
safe_serialization=safe_serialization, | |
) | |
def _remove_text_encoder_monkey_patch(self): | |
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) | |
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) | |