Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
import torch | |
from diffusers import DiffusionPipeline, AutoencoderKL | |
from PIL import Image | |
from torchvision import transforms | |
import numpy as np | |
import tempfile | |
import os | |
import uuid | |
TORCH_COMPILE = os.getenv("TORCH_COMPILE", "0") == "1" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype) | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
custom_pipeline="pipeline_demofusion_sdxl.py", | |
custom_revision="main", | |
torch_dtype=dtype, | |
variant="fp16", | |
use_safetensors=True, | |
vae=vae, | |
) | |
pipe = pipe.to(device) | |
if TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
def load_and_process_image(pil_image): | |
transform = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
] | |
) | |
image = transform(pil_image) | |
image = image.unsqueeze(0).half() | |
return image | |
def pad_image(image): | |
w, h = image.size | |
if w == h: | |
return image | |
elif w > h: | |
new_image = Image.new(image.mode, (w, w), (0, 0, 0)) | |
pad_w = 0 | |
pad_h = (w - h) // 2 | |
new_image.paste(image, (0, pad_h)) | |
return new_image | |
else: | |
new_image = Image.new(image.mode, (h, h), (0, 0, 0)) | |
pad_w = (h - w) // 2 | |
pad_h = 0 | |
new_image.paste(image, (pad_w, 0)) | |
return new_image | |
def predict( | |
input_image, | |
prompt, | |
negative_prompt, | |
seed, | |
scale=2, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if input_image is None: | |
raise gr.Error("Please upload an image.") | |
padded_image = pad_image(input_image).resize((1024, 1024)) | |
padded_image.save(f"padded_image+{seed}.jpg") | |
image_lr = load_and_process_image(padded_image).to(device) | |
generator = torch.manual_seed(seed) | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image_lr=image_lr, | |
width=1024 * scale, | |
height=1024 * scale, | |
view_batch_size=16, | |
stride=64, | |
generator=generator, | |
num_inference_steps=25, | |
guidance_scale=7.5, | |
cosine_scale_1=3, | |
cosine_scale_2=1, | |
cosine_scale_3=1, | |
sigma=0.8, | |
multi_decoder=True, | |
show_image=False, | |
lowvram=True, | |
) | |
images_path = tempfile.mkdtemp() | |
paths = [] | |
uuid_name = uuid.uuid4() | |
for i, img in enumerate(images): | |
img.save(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg") | |
paths.append(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg") | |
return (images[0], images[-1]), paths | |
css = """ | |
#intro{ | |
max-width: 100%; | |
text-align: center; | |
margin: 0 auto; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
"""# Super Resolution - SDXL | |
## [DemoFusion](https://github.com/PRIS-CV/DemoFusion)""", | |
elem_id="intro", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="pil", label="Input Image") | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can.", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
) | |
scale = gr.Slider(minimum=2, maximum=5, value=2, step=1, label="x Scale") | |
seed = gr.Slider( | |
minimum=0, | |
maximum=2**64 - 1, | |
value=1415926535897932, | |
step=1, | |
label="Seed", | |
randomize=True, | |
) | |
btn = gr.Button() | |
with gr.Column(scale=2): | |
image_slider = ImageSlider() | |
files = gr.Files() | |
inputs = [image_input, prompt, negative_prompt, seed, scale] | |
outputs = [image_slider, files] | |
btn.click(predict, inputs=inputs, outputs=outputs, concurrency_limit=1) | |
gr.Examples( | |
fn=predict, | |
examples=[ | |
[ | |
"./examples/lara.jpeg", | |
"photography of lara croft 8k high definition award winning", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
1415535897932, | |
2, | |
], | |
[ | |
"./examples/cybetruck.jpeg", | |
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
1415535897932, | |
2, | |
], | |
[ | |
"./examples/jesus.png", | |
"a photorealistic painting of Jesus Christ, 4k high definition", | |
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic", | |
1415535897932, | |
2, | |
], | |
], | |
inputs=inputs, | |
outputs=outputs, | |
cache_examples=True, | |
) | |
demo.queue(api_open=False) | |
demo.launch(show_api=False) | |