Spaces:
Build error
Build error
Commit
Β·
61c0f31
1
Parent(s):
52c89af
feat(space): integrate microsoft/VibeVoice-1.5B with in-Python download
Browse files- Use official `vibevoice` package and from_pretrained() (no separate hf download step)
- Add minimal Gradio UI with live streaming via AudioStreamer
- Support 1β4 voice samples; normalize script lines to Speaker i
- Fallback to SDPA if flash_attn2 unavailable
- Pin lightweight requirements for Spaces
- app.py +286 -4
- requirements.txt +7 -0
app.py
CHANGED
@@ -1,7 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import threading
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Iterator
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import soundfile as sf
|
10 |
+
import librosa
|
11 |
+
import torch
|
12 |
+
from transformers import set_seed
|
13 |
+
|
14 |
+
from vibevoice.modular.modeling_vibevoice_inference import (
|
15 |
+
VibeVoiceForConditionalGenerationInference,
|
16 |
+
)
|
17 |
+
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
|
18 |
+
from vibevoice.modular.streamer import AudioStreamer
|
19 |
+
|
20 |
+
MODEL_ID = "microsoft/VibeVoice-1.5B"
|
21 |
+
|
22 |
+
def convert_to_16bit(data: np.ndarray) -> np.ndarray:
|
23 |
+
if torch.is_tensor(data):
|
24 |
+
data = data.detach().cpu().numpy()
|
25 |
+
data = np.array(data, dtype=np.float32, copy=False)
|
26 |
+
amax = np.max(np.abs(data)) if data.size else 1.0
|
27 |
+
if amax > 1.0:
|
28 |
+
data = data / amax
|
29 |
+
return (data * 32767.0).astype(np.int16)
|
30 |
+
|
31 |
+
def read_audio(path: str, target_sr: int = 24000) -> np.ndarray:
|
32 |
+
wav, sr = sf.read(path)
|
33 |
+
if wav.ndim > 1:
|
34 |
+
wav = wav.mean(axis=1)
|
35 |
+
if sr != target_sr:
|
36 |
+
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
|
37 |
+
return wav.astype(np.float32)
|
38 |
+
|
39 |
+
class VibeMiniDemo:
|
40 |
+
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 10):
|
41 |
+
self.model_path = model_path
|
42 |
+
self.device = device
|
43 |
+
self.inference_steps = inference_steps
|
44 |
+
self._stop = False
|
45 |
+
self._streamer = None
|
46 |
+
self._load()
|
47 |
+
|
48 |
+
def _load(self):
|
49 |
+
print(f"π Loading VibeVoice from {self.model_path} ...")
|
50 |
+
# Processor pulls tokenizer/config from HF automatically if model_path is a repo id
|
51 |
+
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
|
52 |
+
|
53 |
+
# Try flash-attn2 first; fall back to SDPA if the env doesnβt have it
|
54 |
+
try:
|
55 |
+
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
56 |
+
self.model_path,
|
57 |
+
torch_dtype=torch.bfloat16,
|
58 |
+
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
59 |
+
attn_implementation="flash_attention_2",
|
60 |
+
)
|
61 |
+
except Exception as e:
|
62 |
+
print(f"β οΈ flash_attention_2 unavailable ({type(e).__name__}: {e}); falling back to SDPA")
|
63 |
+
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
64 |
+
self.model_path,
|
65 |
+
torch_dtype=torch.bfloat16,
|
66 |
+
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
67 |
+
attn_implementation="sdpa",
|
68 |
+
)
|
69 |
+
self.model.eval()
|
70 |
+
|
71 |
+
# Configure diffusion steps (matches upstream demo defaults)
|
72 |
+
self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
|
73 |
+
self.model.model.noise_scheduler.config,
|
74 |
+
algorithm_type="sde-dpmsolver++",
|
75 |
+
beta_schedule="squaredcos_cap_v2",
|
76 |
+
)
|
77 |
+
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
78 |
+
print("β
Model ready")
|
79 |
+
|
80 |
+
def stop(self):
|
81 |
+
self._stop = True
|
82 |
+
if self._streamer is not None:
|
83 |
+
try:
|
84 |
+
self._streamer.end()
|
85 |
+
except Exception as e:
|
86 |
+
print(f"stop error: {e}")
|
87 |
+
|
88 |
+
def generate_stream(
|
89 |
+
self,
|
90 |
+
script: str,
|
91 |
+
voice_files: list[str],
|
92 |
+
cfg_scale: float = 1.3,
|
93 |
+
) -> Iterator[tuple]:
|
94 |
+
if not script.strip():
|
95 |
+
yield None, None, "β Please provide a script.", gr.update(visible=False)
|
96 |
+
return
|
97 |
+
|
98 |
+
# Load voice samples (1..4)
|
99 |
+
voice_samples = [read_audio(p) for p in voice_files if p]
|
100 |
+
if not voice_samples:
|
101 |
+
yield None, None, "β Provide at least one voice sample (WAV/MP3/etc).", gr.update(visible=False)
|
102 |
+
return
|
103 |
+
|
104 |
+
# Normalize speaker labels if user didnβt prefix lines
|
105 |
+
lines = []
|
106 |
+
for i, raw in enumerate([ln for ln in script.splitlines() if ln.strip()]):
|
107 |
+
if raw.lower().startswith("speaker") and ":" in raw:
|
108 |
+
lines.append(raw)
|
109 |
+
else:
|
110 |
+
lines.append(f"Speaker {i % max(1, len(voice_samples))}: {raw}")
|
111 |
+
formatted = "\n".join(lines)
|
112 |
+
|
113 |
+
# Pack inputs
|
114 |
+
inputs = self.processor(
|
115 |
+
text=[formatted],
|
116 |
+
voice_samples=[voice_samples],
|
117 |
+
padding=True,
|
118 |
+
return_tensors="pt",
|
119 |
+
return_attention_mask=True,
|
120 |
+
)
|
121 |
+
|
122 |
+
self._stop = False
|
123 |
+
streamer = AudioStreamer(batch_size=1, stop_signal=None, timeout=None)
|
124 |
+
self._streamer = streamer
|
125 |
+
|
126 |
+
# Kick off generation on a worker thread
|
127 |
+
def _worker():
|
128 |
+
try:
|
129 |
+
self.model.generate(
|
130 |
+
**inputs,
|
131 |
+
max_new_tokens=None,
|
132 |
+
cfg_scale=cfg_scale,
|
133 |
+
tokenizer=self.processor.tokenizer,
|
134 |
+
generation_config={"do_sample": False},
|
135 |
+
audio_streamer=streamer,
|
136 |
+
stop_check_fn=lambda: self._stop,
|
137 |
+
verbose=False,
|
138 |
+
refresh_negative=True,
|
139 |
+
)
|
140 |
+
except Exception as e:
|
141 |
+
print(f"gen error: {e}")
|
142 |
+
streamer.end()
|
143 |
+
|
144 |
+
t = threading.Thread(target=_worker, daemon=True)
|
145 |
+
t.start()
|
146 |
+
|
147 |
+
# Stream chunks out
|
148 |
+
sr = 24000
|
149 |
+
all_chunks, pending = [], []
|
150 |
+
last_yield = time.time()
|
151 |
+
min_chunk = sr * 30 # ~30s per push feels smooth for Spaces audio
|
152 |
+
min_interval = 15.0 # or every 15s if chunks are small
|
153 |
+
|
154 |
+
stream0 = streamer.get_stream(0)
|
155 |
+
got_any = False
|
156 |
+
yielded_any = False
|
157 |
+
chunk_idx = 0
|
158 |
+
log_prefix = f"ποΈ VibeVoice streaming (CFG={cfg_scale})\n"
|
159 |
+
|
160 |
+
for chunk in stream0:
|
161 |
+
if self._stop:
|
162 |
+
streamer.end()
|
163 |
+
break
|
164 |
+
got_any = True
|
165 |
+
chunk_idx += 1
|
166 |
+
|
167 |
+
if torch.is_tensor(chunk):
|
168 |
+
if chunk.dtype == torch.bfloat16:
|
169 |
+
chunk = chunk.float()
|
170 |
+
audio_np = chunk.cpu().numpy().astype(np.float32)
|
171 |
+
else:
|
172 |
+
audio_np = np.asarray(chunk, dtype=np.float32)
|
173 |
+
|
174 |
+
if audio_np.ndim > 1:
|
175 |
+
audio_np = audio_np.squeeze(-1)
|
176 |
+
|
177 |
+
pcm16 = convert_to_16bit(audio_np)
|
178 |
+
all_chunks.append(pcm16)
|
179 |
+
pending.append(pcm16)
|
180 |
+
|
181 |
+
need_push = False
|
182 |
+
if not yielded_any and sum(len(c) for c in pending) >= min_chunk:
|
183 |
+
need_push = True
|
184 |
+
yielded_any = True
|
185 |
+
elif yielded_any and (
|
186 |
+
sum(len(c) for c in pending) >= min_chunk
|
187 |
+
or (time.time() - last_yield) >= min_interval
|
188 |
+
):
|
189 |
+
need_push = True
|
190 |
+
|
191 |
+
if need_push and pending:
|
192 |
+
new_audio = np.concatenate(pending)
|
193 |
+
total_sec = sum(len(c) for c in all_chunks) / sr
|
194 |
+
msg = log_prefix + f"π΅ {total_sec:.1f}s generated (chunk {chunk_idx})"
|
195 |
+
yield (sr, new_audio), None, msg, gr.update(visible=True)
|
196 |
+
pending, last_yield = [], time.time()
|
197 |
+
|
198 |
+
# Flush any remainder
|
199 |
+
if pending:
|
200 |
+
final = np.concatenate(pending)
|
201 |
+
total_sec = sum(len(c) for c in all_chunks) / sr
|
202 |
+
yield (sr, final), None, log_prefix + f"π΅ final chunk: {total_sec:.1f}s", gr.update(visible=True)
|
203 |
+
yielded_any = True
|
204 |
+
|
205 |
+
# Join worker quickly; then deliver full take
|
206 |
+
t.join(timeout=5.0)
|
207 |
+
self._streamer = None
|
208 |
+
|
209 |
+
if not got_any:
|
210 |
+
yield None, None, "β No audio chunks received from the model.", gr.update(visible=False)
|
211 |
+
return
|
212 |
+
|
213 |
+
if all_chunks:
|
214 |
+
complete = np.concatenate(all_chunks)
|
215 |
+
final_sec = len(complete) / sr
|
216 |
+
msg = f"β
Done. Total: {final_sec:.1f}s"
|
217 |
+
yield None, (sr, complete), msg, gr.update(visible=False)
|
218 |
+
|
219 |
+
def build_ui(demo: VibeMiniDemo):
|
220 |
+
with gr.Blocks(title="VibeVoice β Minimal") as app:
|
221 |
+
gr.Markdown("## ποΈ VibeVoice β Minimal Space\nProvide a script and 1β4 short voice samples.")
|
222 |
+
|
223 |
+
with gr.Row():
|
224 |
+
with gr.Column():
|
225 |
+
script = gr.Textbox(
|
226 |
+
label="Script",
|
227 |
+
value="Speaker 0: Welcome to VibeVoice!\nSpeaker 0: This is a minimal Space demo.",
|
228 |
+
lines=8,
|
229 |
+
)
|
230 |
+
cfg = gr.Slider(1.0, 2.0, step=0.05, value=1.3, label="CFG Scale")
|
231 |
+
voices = gr.Files(
|
232 |
+
label="Voice samples (WAV/MP3/FLAC/OGG/M4A/AAC) β 1 to 4 files",
|
233 |
+
file_count="multiple",
|
234 |
+
type="filepath",
|
235 |
+
)
|
236 |
+
with gr.Row():
|
237 |
+
go = gr.Button("π Generate")
|
238 |
+
stop = gr.Button("π Stop", variant="stop")
|
239 |
+
|
240 |
+
with gr.Column():
|
241 |
+
live = gr.Audio(label="Live Stream", streaming=True, autoplay=True)
|
242 |
+
full = gr.Audio(label="Complete Take (downloadable)")
|
243 |
+
log = gr.Textbox(label="Log", interactive=False)
|
244 |
+
badge = gr.HTML(visible=False, value="""
|
245 |
+
<div style="background:#dcfce7;border:1px solid #86efac;padding:8px;border-radius:8px;text-align:center">
|
246 |
+
<strong>LIVE STREAMING</strong>
|
247 |
+
</div>
|
248 |
+
""")
|
249 |
+
|
250 |
+
def on_go(script, cfg, voices):
|
251 |
+
paths = [f.name if hasattr(f, "name") else f for f in (voices or [])][:4]
|
252 |
+
# Clear outputs first
|
253 |
+
yield None, gr.update(value=None), "β³ Startingβ¦", gr.update(visible=True)
|
254 |
+
|
255 |
+
# Stream generation
|
256 |
+
for s_chunk, full_take, msg, badge_vis in demo.generate_stream(
|
257 |
+
script=script,
|
258 |
+
voice_files=paths,
|
259 |
+
cfg_scale=cfg,
|
260 |
+
):
|
261 |
+
if full_take is not None:
|
262 |
+
# final: hide live, show full
|
263 |
+
yield None, full_take, msg, gr.update(visible=False)
|
264 |
+
else:
|
265 |
+
# live streaming
|
266 |
+
yield s_chunk, gr.update(), msg, badge_vis
|
267 |
+
|
268 |
+
go.click(
|
269 |
+
on_go,
|
270 |
+
inputs=[script, cfg, voices],
|
271 |
+
outputs=[live, full, log, badge],
|
272 |
+
)
|
273 |
+
|
274 |
+
def on_stop():
|
275 |
+
demo.stop()
|
276 |
+
return "π Stopped.", gr.update(visible=False)
|
277 |
+
|
278 |
+
stop.click(on_stop, outputs=[log, badge])
|
279 |
+
|
280 |
+
return app
|
281 |
|
282 |
+
def main():
|
283 |
+
set_seed(42)
|
284 |
+
demo = VibeMiniDemo(model_path=MODEL_ID, device="cuda" if torch.cuda.is_available() else "cpu")
|
285 |
+
app = build_ui(demo)
|
286 |
+
app.queue(max_size=20, default_concurrency_limit=1).launch(server_name="0.0.0.0", show_api=False)
|
287 |
|
288 |
+
if __name__ == "__main__":
|
289 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/microsoft/VibeVoice@main
|
2 |
+
gradio
|
3 |
+
librosa
|
4 |
+
numpy
|
5 |
+
soundfile
|
6 |
+
torch
|
7 |
+
transformers
|