Spaces:
Build error
Build error
Commit
·
85250f0
1
Parent(s):
f1bb341
Change of app file based on akhaliq/MT3 space
Browse files- app.py +267 -4
- download.wav +0 -0
app.py
CHANGED
|
@@ -1,7 +1,270 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from pathlib import Path
|
| 4 |
|
| 5 |
+
os.system("python3 -m pip install -e .")
|
|
|
|
| 6 |
|
| 7 |
+
import functools
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import tensorflow.compat.v2 as tf
|
| 12 |
+
|
| 13 |
+
import functools
|
| 14 |
+
import gin
|
| 15 |
+
import jax
|
| 16 |
+
import librosa
|
| 17 |
+
import note_seq
|
| 18 |
+
import seqio
|
| 19 |
+
import t5
|
| 20 |
+
import t5x
|
| 21 |
+
|
| 22 |
+
from mt3 import metrics_utils
|
| 23 |
+
from mt3 import models
|
| 24 |
+
from mt3 import network
|
| 25 |
+
from mt3 import note_sequences
|
| 26 |
+
from mt3 import preprocessors
|
| 27 |
+
from mt3 import spectrograms
|
| 28 |
+
from mt3 import vocabularies
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
import nest_asyncio
|
| 32 |
+
nest_asyncio.apply()
|
| 33 |
+
|
| 34 |
+
SAMPLE_RATE = 16000
|
| 35 |
+
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'
|
| 36 |
+
|
| 37 |
+
def upload_audio(audio, sample_rate):
|
| 38 |
+
return note_seq.audio_io.wav_data_to_samples_librosa(
|
| 39 |
+
audio, sample_rate=sample_rate)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class InferenceModel(object):
|
| 44 |
+
"""Wrapper of T5X model for music transcription."""
|
| 45 |
+
|
| 46 |
+
def __init__(self, checkpoint_path, model_type='mt3'):
|
| 47 |
+
|
| 48 |
+
# Model Constants.
|
| 49 |
+
if model_type == 'ismir2021':
|
| 50 |
+
num_velocity_bins = 127
|
| 51 |
+
self.encoding_spec = note_sequences.NoteEncodingSpec
|
| 52 |
+
self.inputs_length = 512
|
| 53 |
+
elif model_type == 'mt3':
|
| 54 |
+
num_velocity_bins = 1
|
| 55 |
+
self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec
|
| 56 |
+
self.inputs_length = 256
|
| 57 |
+
else:
|
| 58 |
+
raise ValueError('unknown model_type: %s' % model_type)
|
| 59 |
+
|
| 60 |
+
gin_files = ['/home/user/app/mt3/gin/model.gin',
|
| 61 |
+
'/home/user/app/mt3/gin/mt3.gin']
|
| 62 |
+
|
| 63 |
+
self.batch_size = 8
|
| 64 |
+
self.outputs_length = 1024
|
| 65 |
+
self.sequence_length = {'inputs': self.inputs_length,
|
| 66 |
+
'targets': self.outputs_length}
|
| 67 |
+
|
| 68 |
+
self.partitioner = t5x.partitioning.ModelBasedPjitPartitioner(
|
| 69 |
+
model_parallel_submesh=(1, 1, 1, 1), num_partitions=1)
|
| 70 |
+
|
| 71 |
+
# Build Codecs and Vocabularies.
|
| 72 |
+
self.spectrogram_config = spectrograms.SpectrogramConfig()
|
| 73 |
+
self.codec = vocabularies.build_codec(
|
| 74 |
+
vocab_config=vocabularies.VocabularyConfig(
|
| 75 |
+
num_velocity_bins=num_velocity_bins))
|
| 76 |
+
self.vocabulary = vocabularies.vocabulary_from_codec(self.codec)
|
| 77 |
+
self.output_features = {
|
| 78 |
+
'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2),
|
| 79 |
+
'targets': seqio.Feature(vocabulary=self.vocabulary),
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
# Create a T5X model.
|
| 83 |
+
self._parse_gin(gin_files)
|
| 84 |
+
self.model = self._load_model()
|
| 85 |
+
|
| 86 |
+
# Restore from checkpoint.
|
| 87 |
+
self.restore_from_checkpoint(checkpoint_path)
|
| 88 |
+
|
| 89 |
+
@property
|
| 90 |
+
def input_shapes(self):
|
| 91 |
+
return {
|
| 92 |
+
'encoder_input_tokens': (self.batch_size, self.inputs_length),
|
| 93 |
+
'decoder_input_tokens': (self.batch_size, self.outputs_length)
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
def _parse_gin(self, gin_files):
|
| 97 |
+
"""Parse gin files used to train the model."""
|
| 98 |
+
gin_bindings = [
|
| 99 |
+
'from __gin__ import dynamic_registration',
|
| 100 |
+
'from mt3 import vocabularies',
|
| 101 |
+
'[email protected]()',
|
| 102 |
+
'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS'
|
| 103 |
+
]
|
| 104 |
+
with gin.unlock_config():
|
| 105 |
+
gin.parse_config_files_and_bindings(
|
| 106 |
+
gin_files, gin_bindings, finalize_config=False)
|
| 107 |
+
|
| 108 |
+
def _load_model(self):
|
| 109 |
+
"""Load up a T5X `Model` after parsing training gin config."""
|
| 110 |
+
model_config = gin.get_configurable(network.T5Config)()
|
| 111 |
+
module = network.Transformer(config=model_config)
|
| 112 |
+
return models.ContinuousInputsEncoderDecoderModel(
|
| 113 |
+
module=module,
|
| 114 |
+
input_vocabulary=self.output_features['inputs'].vocabulary,
|
| 115 |
+
output_vocabulary=self.output_features['targets'].vocabulary,
|
| 116 |
+
optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0),
|
| 117 |
+
input_depth=spectrograms.input_depth(self.spectrogram_config))
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def restore_from_checkpoint(self, checkpoint_path):
|
| 121 |
+
"""Restore training state from checkpoint, resets self._predict_fn()."""
|
| 122 |
+
train_state_initializer = t5x.utils.TrainStateInitializer(
|
| 123 |
+
optimizer_def=self.model.optimizer_def,
|
| 124 |
+
init_fn=self.model.get_initial_variables,
|
| 125 |
+
input_shapes=self.input_shapes,
|
| 126 |
+
partitioner=self.partitioner)
|
| 127 |
+
|
| 128 |
+
restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig(
|
| 129 |
+
path=checkpoint_path, mode='specific', dtype='float32')
|
| 130 |
+
|
| 131 |
+
train_state_axes = train_state_initializer.train_state_axes
|
| 132 |
+
self._predict_fn = self._get_predict_fn(train_state_axes)
|
| 133 |
+
self._train_state = train_state_initializer.from_checkpoint_or_scratch(
|
| 134 |
+
[restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0))
|
| 135 |
+
|
| 136 |
+
@functools.lru_cache()
|
| 137 |
+
def _get_predict_fn(self, train_state_axes):
|
| 138 |
+
"""Generate a partitioned prediction function for decoding."""
|
| 139 |
+
def partial_predict_fn(params, batch, decode_rng):
|
| 140 |
+
return self.model.predict_batch_with_aux(
|
| 141 |
+
params, batch, decoder_params={'decode_rng': None})
|
| 142 |
+
return self.partitioner.partition(
|
| 143 |
+
partial_predict_fn,
|
| 144 |
+
in_axis_resources=(
|
| 145 |
+
train_state_axes.params,
|
| 146 |
+
t5x.partitioning.PartitionSpec('data',), None),
|
| 147 |
+
out_axis_resources=t5x.partitioning.PartitionSpec('data',)
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def predict_tokens(self, batch, seed=0):
|
| 151 |
+
"""Predict tokens from preprocessed dataset batch."""
|
| 152 |
+
prediction, _ = self._predict_fn(
|
| 153 |
+
self._train_state.params, batch, jax.random.PRNGKey(seed))
|
| 154 |
+
return self.vocabulary.decode_tf(prediction).numpy()
|
| 155 |
+
|
| 156 |
+
def __call__(self, audio):
|
| 157 |
+
"""Infer note sequence from audio samples.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
audio: 1-d numpy array of audio samples (16kHz) for a single example.
|
| 161 |
+
Returns:
|
| 162 |
+
A note_sequence of the transcribed audio.
|
| 163 |
+
"""
|
| 164 |
+
ds = self.audio_to_dataset(audio)
|
| 165 |
+
ds = self.preprocess(ds)
|
| 166 |
+
|
| 167 |
+
model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)(
|
| 168 |
+
ds, task_feature_lengths=self.sequence_length)
|
| 169 |
+
model_ds = model_ds.batch(self.batch_size)
|
| 170 |
+
|
| 171 |
+
inferences = (tokens for batch in model_ds.as_numpy_iterator()
|
| 172 |
+
for tokens in self.predict_tokens(batch))
|
| 173 |
+
|
| 174 |
+
predictions = []
|
| 175 |
+
for example, tokens in zip(ds.as_numpy_iterator(), inferences):
|
| 176 |
+
predictions.append(self.postprocess(tokens, example))
|
| 177 |
+
|
| 178 |
+
result = metrics_utils.event_predictions_to_ns(
|
| 179 |
+
predictions, codec=self.codec, encoding_spec=self.encoding_spec)
|
| 180 |
+
return result['est_ns']
|
| 181 |
+
|
| 182 |
+
def audio_to_dataset(self, audio):
|
| 183 |
+
"""Create a TF Dataset of spectrograms from input audio."""
|
| 184 |
+
frames, frame_times = self._audio_to_frames(audio)
|
| 185 |
+
return tf.data.Dataset.from_tensors({
|
| 186 |
+
'inputs': frames,
|
| 187 |
+
'input_times': frame_times,
|
| 188 |
+
})
|
| 189 |
+
|
| 190 |
+
def _audio_to_frames(self, audio):
|
| 191 |
+
"""Compute spectrogram frames from audio."""
|
| 192 |
+
frame_size = self.spectrogram_config.hop_width
|
| 193 |
+
padding = [0, frame_size - len(audio) % frame_size]
|
| 194 |
+
audio = np.pad(audio, padding, mode='constant')
|
| 195 |
+
frames = spectrograms.split_audio(audio, self.spectrogram_config)
|
| 196 |
+
num_frames = len(audio) // frame_size
|
| 197 |
+
times = np.arange(num_frames) / self.spectrogram_config.frames_per_second
|
| 198 |
+
return frames, times
|
| 199 |
+
|
| 200 |
+
def preprocess(self, ds):
|
| 201 |
+
pp_chain = [
|
| 202 |
+
functools.partial(
|
| 203 |
+
t5.data.preprocessors.split_tokens_to_inputs_length,
|
| 204 |
+
sequence_length=self.sequence_length,
|
| 205 |
+
output_features=self.output_features,
|
| 206 |
+
feature_key='inputs',
|
| 207 |
+
additional_feature_keys=['input_times']),
|
| 208 |
+
# Cache occurs here during training.
|
| 209 |
+
preprocessors.add_dummy_targets,
|
| 210 |
+
functools.partial(
|
| 211 |
+
preprocessors.compute_spectrograms,
|
| 212 |
+
spectrogram_config=self.spectrogram_config)
|
| 213 |
+
]
|
| 214 |
+
for pp in pp_chain:
|
| 215 |
+
ds = pp(ds)
|
| 216 |
+
return ds
|
| 217 |
+
|
| 218 |
+
def postprocess(self, tokens, example):
|
| 219 |
+
tokens = self._trim_eos(tokens)
|
| 220 |
+
start_time = example['input_times'][0]
|
| 221 |
+
# Round down to nearest symbolic token step.
|
| 222 |
+
start_time -= start_time % (1 / self.codec.steps_per_second)
|
| 223 |
+
return {
|
| 224 |
+
'est_tokens': tokens,
|
| 225 |
+
'start_time': start_time,
|
| 226 |
+
# Internal MT3 code expects raw inputs, not used here.
|
| 227 |
+
'raw_inputs': []
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
@staticmethod
|
| 231 |
+
def _trim_eos(tokens):
|
| 232 |
+
tokens = np.array(tokens, np.int32)
|
| 233 |
+
if vocabularies.DECODED_EOS_ID in tokens:
|
| 234 |
+
tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)]
|
| 235 |
+
return tokens
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
# Start inference model
|
| 239 |
+
inference_model = InferenceModel('/home/user/app/checkpoints/mt3/', 'mt3')
|
| 240 |
+
|
| 241 |
+
def inference(audio):
|
| 242 |
+
with open(audio, 'rb') as fd:
|
| 243 |
+
contents = fd.read()
|
| 244 |
+
audio = upload_audio(contents,sample_rate=16000)
|
| 245 |
+
|
| 246 |
+
est_ns = inference_model(audio)
|
| 247 |
+
|
| 248 |
+
note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid')
|
| 249 |
+
|
| 250 |
+
return './transcribed.mid'
|
| 251 |
+
|
| 252 |
+
title = "MT3"
|
| 253 |
+
description = "Gradio demo for MT3: Multi-Task Multitrack Music Transcription. To use it, simply upload your audio file, or click one of the examples to load them. Read more at the links below."
|
| 254 |
+
|
| 255 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3: Multi-Task Multitrack Music Transcription</a> | <a href='https://github.com/magenta/mt3' target='_blank'>Github Repo</a></p>"
|
| 256 |
+
|
| 257 |
+
examples=[['download.wav']]
|
| 258 |
+
|
| 259 |
+
gr.Interface(
|
| 260 |
+
inference,
|
| 261 |
+
gr.inputs.Audio(type="filepath", label="Input"),
|
| 262 |
+
[gr.outputs.File(label="Output")],
|
| 263 |
+
title=title,
|
| 264 |
+
description=description,
|
| 265 |
+
article=article,
|
| 266 |
+
examples=examples,
|
| 267 |
+
allow_flagging=False,
|
| 268 |
+
allow_screenshot=False,
|
| 269 |
+
enable_queue=True
|
| 270 |
+
).launch()
|
download.wav
ADDED
|
Binary file (320 kB). View file
|
|
|