added inference
Browse files- tasks/text.py +33 -3
tasks/text.py
CHANGED
|
@@ -7,11 +7,19 @@ import random
|
|
| 7 |
from .utils.evaluation import TextEvaluationRequest
|
| 8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
router = APIRouter()
|
| 11 |
|
| 12 |
-
DESCRIPTION = "
|
| 13 |
ROUTE = "/text"
|
| 14 |
|
|
|
|
|
|
|
| 15 |
@router.post(ROUTE, tags=["Text Task"],
|
| 16 |
description=DESCRIPTION)
|
| 17 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
@@ -37,6 +45,12 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 37 |
"7_fossil_fuels_needed": 7
|
| 38 |
}
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# Load and prepare the dataset
|
| 41 |
dataset = load_dataset(request.dataset_name)
|
| 42 |
|
|
@@ -55,10 +69,26 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 55 |
# YOUR MODEL INFERENCE CODE HERE
|
| 56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 57 |
#--------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
#
|
| 60 |
true_labels = test_dataset["label"]
|
| 61 |
-
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
| 62 |
|
| 63 |
#--------------------------------------------------------------------------------------------
|
| 64 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
|
| 7 |
from .utils.evaluation import TextEvaluationRequest
|
| 8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 9 |
|
| 10 |
+
|
| 11 |
+
import tensorflow as tf
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
from transformers import ElectraTokenizer
|
| 14 |
+
|
| 15 |
+
|
| 16 |
router = APIRouter()
|
| 17 |
|
| 18 |
+
DESCRIPTION = "Electra with balanced dataset"
|
| 19 |
ROUTE = "/text"
|
| 20 |
|
| 21 |
+
|
| 22 |
+
|
| 23 |
@router.post(ROUTE, tags=["Text Task"],
|
| 24 |
description=DESCRIPTION)
|
| 25 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
|
|
| 45 |
"7_fossil_fuels_needed": 7
|
| 46 |
}
|
| 47 |
|
| 48 |
+
# Download our pre-trained model from Hugging Face
|
| 49 |
+
model_path = hf_hub_download(repo_id="julianaconsuegra/electra-base-climate-disinformation", filename="tf_model.h5")
|
| 50 |
+
|
| 51 |
+
# Load the model
|
| 52 |
+
model = tf.keras.models.load_model(model_path)
|
| 53 |
+
|
| 54 |
# Load and prepare the dataset
|
| 55 |
dataset = load_dataset(request.dataset_name)
|
| 56 |
|
|
|
|
| 69 |
# YOUR MODEL INFERENCE CODE HERE
|
| 70 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 71 |
#--------------------------------------------------------------------------------------------
|
| 72 |
+
# Load ELECTRA tokenizer
|
| 73 |
+
tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator")
|
| 74 |
+
|
| 75 |
+
# Tokenize test data with same parameters as training
|
| 76 |
+
inputs = tokenizer(
|
| 77 |
+
test_dataset["text"],
|
| 78 |
+
truncation=True,
|
| 79 |
+
padding="max_length",
|
| 80 |
+
return_tensors="tf"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Run model prediction
|
| 84 |
+
logits = model.predict({
|
| 85 |
+
"input_ids": inputs["input_ids"],
|
| 86 |
+
"attention_mask": inputs["attention_mask"]
|
| 87 |
+
})
|
| 88 |
+
predictions = tf.argmax(logits, axis=1).numpy()
|
| 89 |
|
| 90 |
+
# Get ground truth labels
|
| 91 |
true_labels = test_dataset["label"]
|
|
|
|
| 92 |
|
| 93 |
#--------------------------------------------------------------------------------------------
|
| 94 |
# YOUR MODEL INFERENCE STOPS HERE
|