Spaces:
Runtime error
Runtime error
Cache Model into Docker Container
Browse files- Dockerfile +2 -0
- cache.py +55 -0
Dockerfile
CHANGED
@@ -58,5 +58,7 @@ ENV PYTHONPATH=${HOME}/app \
|
|
58 |
TQDM_POSITION=-1 \
|
59 |
TQDM_MININTERVAL=1 \
|
60 |
SYSTEM=spaces
|
|
|
|
|
61 |
# CMD ["python", "app.py"]
|
62 |
CMD ["python", "server.py"]
|
|
|
58 |
TQDM_POSITION=-1 \
|
59 |
TQDM_MININTERVAL=1 \
|
60 |
SYSTEM=spaces
|
61 |
+
|
62 |
+
RUN python -u cache.py
|
63 |
# CMD ["python", "app.py"]
|
64 |
CMD ["python", "server.py"]
|
cache.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torchaudio
|
10 |
+
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
|
11 |
+
from huggingface_hub import snapshot_download
|
12 |
+
from seamless_communication.inference import Translator
|
13 |
+
|
14 |
+
from lang_list import (
|
15 |
+
ASR_TARGET_LANGUAGE_NAMES,
|
16 |
+
LANGUAGE_NAME_TO_CODE,
|
17 |
+
S2ST_TARGET_LANGUAGE_NAMES,
|
18 |
+
S2TT_TARGET_LANGUAGE_NAMES,
|
19 |
+
T2ST_TARGET_LANGUAGE_NAMES,
|
20 |
+
T2TT_TARGET_LANGUAGE_NAMES,
|
21 |
+
TEXT_SOURCE_LANGUAGE_NAMES,
|
22 |
+
)
|
23 |
+
|
24 |
+
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models"))
|
25 |
+
if not CHECKPOINTS_PATH.exists():
|
26 |
+
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)
|
27 |
+
asset_store.env_resolvers.clear()
|
28 |
+
asset_store.env_resolvers.append(lambda: "demo")
|
29 |
+
demo_metadata = [
|
30 |
+
{
|
31 |
+
"name": "seamlessM4T_v2_large@demo",
|
32 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
|
33 |
+
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"name": "vocoder_v2@demo",
|
37 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/vocoder_v2.pt",
|
38 |
+
},
|
39 |
+
]
|
40 |
+
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))
|
41 |
+
|
42 |
+
if torch.cuda.is_available():
|
43 |
+
device = torch.device("cuda:0")
|
44 |
+
dtype = torch.float16
|
45 |
+
else:
|
46 |
+
device = torch.device("cpu")
|
47 |
+
dtype = torch.float32
|
48 |
+
|
49 |
+
translator = Translator(
|
50 |
+
model_name_or_card="seamlessM4T_v2_large",
|
51 |
+
vocoder_name_or_card="vocoder_v2",
|
52 |
+
device=device,
|
53 |
+
dtype=dtype,
|
54 |
+
apply_mintox=True,
|
55 |
+
)
|