Spaces:
Runtime error
Runtime error
Initial Commit to Test Runpod
Browse files- Dockerfile +16 -0
- lang_list.py +255 -0
- main.py +25 -0
- requirements.txt +5 -0
- test_input.json +7 -0
- translator.py +39 -0
- whl/seamless_communication-1.0.0-py3-none-any.whl +0 -0
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
|
| 2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
| 3 |
+
|
| 4 |
+
RUN useradd -m -u 1000 user
|
| 5 |
+
USER user
|
| 6 |
+
ENV HOME=/home/user \
|
| 7 |
+
PATH=/home/user/.local/bin:${PATH}
|
| 8 |
+
WORKDIR ${HOME}/app
|
| 9 |
+
|
| 10 |
+
COPY --chown=1000 . ${HOME}/app
|
| 11 |
+
RUN pip install -r ${HOME}/app/requirements.txt && \
|
| 12 |
+
pip install fairseq2 --pre --extra-index-url https://fair.pkg.atmeta.com/fairseq2/pt2.1.0/cu121 && \
|
| 13 |
+
pip install ${HOME}/app/whl/seamless_communication-1.0.0-py3-none-any.whl
|
| 14 |
+
# This will cache the model into the docker image
|
| 15 |
+
RUN python -u translator.py
|
| 16 |
+
CMD ["python", "main.py"]
|
lang_list.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Language dict
|
| 2 |
+
language_code_to_name = {
|
| 3 |
+
"afr": "Afrikaans",
|
| 4 |
+
"amh": "Amharic",
|
| 5 |
+
"arb": "Modern Standard Arabic",
|
| 6 |
+
"ary": "Moroccan Arabic",
|
| 7 |
+
"arz": "Egyptian Arabic",
|
| 8 |
+
"asm": "Assamese",
|
| 9 |
+
"ast": "Asturian",
|
| 10 |
+
"azj": "North Azerbaijani",
|
| 11 |
+
"bel": "Belarusian",
|
| 12 |
+
"ben": "Bengali",
|
| 13 |
+
"bos": "Bosnian",
|
| 14 |
+
"bul": "Bulgarian",
|
| 15 |
+
"cat": "Catalan",
|
| 16 |
+
"ceb": "Cebuano",
|
| 17 |
+
"ces": "Czech",
|
| 18 |
+
"ckb": "Central Kurdish",
|
| 19 |
+
"cmn": "Mandarin Chinese",
|
| 20 |
+
"cym": "Welsh",
|
| 21 |
+
"dan": "Danish",
|
| 22 |
+
"deu": "German",
|
| 23 |
+
"ell": "Greek",
|
| 24 |
+
"eng": "English",
|
| 25 |
+
"est": "Estonian",
|
| 26 |
+
"eus": "Basque",
|
| 27 |
+
"fin": "Finnish",
|
| 28 |
+
"fra": "French",
|
| 29 |
+
"gaz": "West Central Oromo",
|
| 30 |
+
"gle": "Irish",
|
| 31 |
+
"glg": "Galician",
|
| 32 |
+
"guj": "Gujarati",
|
| 33 |
+
"heb": "Hebrew",
|
| 34 |
+
"hin": "Hindi",
|
| 35 |
+
"hrv": "Croatian",
|
| 36 |
+
"hun": "Hungarian",
|
| 37 |
+
"hye": "Armenian",
|
| 38 |
+
"ibo": "Igbo",
|
| 39 |
+
"ind": "Indonesian",
|
| 40 |
+
"isl": "Icelandic",
|
| 41 |
+
"ita": "Italian",
|
| 42 |
+
"jav": "Javanese",
|
| 43 |
+
"jpn": "Japanese",
|
| 44 |
+
"kam": "Kamba",
|
| 45 |
+
"kan": "Kannada",
|
| 46 |
+
"kat": "Georgian",
|
| 47 |
+
"kaz": "Kazakh",
|
| 48 |
+
"kea": "Kabuverdianu",
|
| 49 |
+
"khk": "Halh Mongolian",
|
| 50 |
+
"khm": "Khmer",
|
| 51 |
+
"kir": "Kyrgyz",
|
| 52 |
+
"kor": "Korean",
|
| 53 |
+
"lao": "Lao",
|
| 54 |
+
"lit": "Lithuanian",
|
| 55 |
+
"ltz": "Luxembourgish",
|
| 56 |
+
"lug": "Ganda",
|
| 57 |
+
"luo": "Luo",
|
| 58 |
+
"lvs": "Standard Latvian",
|
| 59 |
+
"mai": "Maithili",
|
| 60 |
+
"mal": "Malayalam",
|
| 61 |
+
"mar": "Marathi",
|
| 62 |
+
"mkd": "Macedonian",
|
| 63 |
+
"mlt": "Maltese",
|
| 64 |
+
"mni": "Meitei",
|
| 65 |
+
"mya": "Burmese",
|
| 66 |
+
"nld": "Dutch",
|
| 67 |
+
"nno": "Norwegian Nynorsk",
|
| 68 |
+
"nob": "Norwegian Bokm\u00e5l",
|
| 69 |
+
"npi": "Nepali",
|
| 70 |
+
"nya": "Nyanja",
|
| 71 |
+
"oci": "Occitan",
|
| 72 |
+
"ory": "Odia",
|
| 73 |
+
"pan": "Punjabi",
|
| 74 |
+
"pbt": "Southern Pashto",
|
| 75 |
+
"pes": "Western Persian",
|
| 76 |
+
"pol": "Polish",
|
| 77 |
+
"por": "Portuguese",
|
| 78 |
+
"ron": "Romanian",
|
| 79 |
+
"rus": "Russian",
|
| 80 |
+
"slk": "Slovak",
|
| 81 |
+
"slv": "Slovenian",
|
| 82 |
+
"sna": "Shona",
|
| 83 |
+
"snd": "Sindhi",
|
| 84 |
+
"som": "Somali",
|
| 85 |
+
"spa": "Spanish",
|
| 86 |
+
"srp": "Serbian",
|
| 87 |
+
"swe": "Swedish",
|
| 88 |
+
"swh": "Swahili",
|
| 89 |
+
"tam": "Tamil",
|
| 90 |
+
"tel": "Telugu",
|
| 91 |
+
"tgk": "Tajik",
|
| 92 |
+
"tgl": "Tagalog",
|
| 93 |
+
"tha": "Thai",
|
| 94 |
+
"tur": "Turkish",
|
| 95 |
+
"ukr": "Ukrainian",
|
| 96 |
+
"urd": "Urdu",
|
| 97 |
+
"uzn": "Northern Uzbek",
|
| 98 |
+
"vie": "Vietnamese",
|
| 99 |
+
"xho": "Xhosa",
|
| 100 |
+
"yor": "Yoruba",
|
| 101 |
+
"yue": "Cantonese",
|
| 102 |
+
"zlm": "Colloquial Malay",
|
| 103 |
+
"zsm": "Standard Malay",
|
| 104 |
+
"zul": "Zulu",
|
| 105 |
+
}
|
| 106 |
+
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
| 107 |
+
|
| 108 |
+
# Source langs: S2ST / S2TT / ASR don't need source lang
|
| 109 |
+
# T2TT / T2ST use this
|
| 110 |
+
text_source_language_codes = [
|
| 111 |
+
"afr",
|
| 112 |
+
"amh",
|
| 113 |
+
"arb",
|
| 114 |
+
"ary",
|
| 115 |
+
"arz",
|
| 116 |
+
"asm",
|
| 117 |
+
"azj",
|
| 118 |
+
"bel",
|
| 119 |
+
"ben",
|
| 120 |
+
"bos",
|
| 121 |
+
"bul",
|
| 122 |
+
"cat",
|
| 123 |
+
"ceb",
|
| 124 |
+
"ces",
|
| 125 |
+
"ckb",
|
| 126 |
+
"cmn",
|
| 127 |
+
"cym",
|
| 128 |
+
"dan",
|
| 129 |
+
"deu",
|
| 130 |
+
"ell",
|
| 131 |
+
"eng",
|
| 132 |
+
"est",
|
| 133 |
+
"eus",
|
| 134 |
+
"fin",
|
| 135 |
+
"fra",
|
| 136 |
+
"gaz",
|
| 137 |
+
"gle",
|
| 138 |
+
"glg",
|
| 139 |
+
"guj",
|
| 140 |
+
"heb",
|
| 141 |
+
"hin",
|
| 142 |
+
"hrv",
|
| 143 |
+
"hun",
|
| 144 |
+
"hye",
|
| 145 |
+
"ibo",
|
| 146 |
+
"ind",
|
| 147 |
+
"isl",
|
| 148 |
+
"ita",
|
| 149 |
+
"jav",
|
| 150 |
+
"jpn",
|
| 151 |
+
"kan",
|
| 152 |
+
"kat",
|
| 153 |
+
"kaz",
|
| 154 |
+
"khk",
|
| 155 |
+
"khm",
|
| 156 |
+
"kir",
|
| 157 |
+
"kor",
|
| 158 |
+
"lao",
|
| 159 |
+
"lit",
|
| 160 |
+
"lug",
|
| 161 |
+
"luo",
|
| 162 |
+
"lvs",
|
| 163 |
+
"mai",
|
| 164 |
+
"mal",
|
| 165 |
+
"mar",
|
| 166 |
+
"mkd",
|
| 167 |
+
"mlt",
|
| 168 |
+
"mni",
|
| 169 |
+
"mya",
|
| 170 |
+
"nld",
|
| 171 |
+
"nno",
|
| 172 |
+
"nob",
|
| 173 |
+
"npi",
|
| 174 |
+
"nya",
|
| 175 |
+
"ory",
|
| 176 |
+
"pan",
|
| 177 |
+
"pbt",
|
| 178 |
+
"pes",
|
| 179 |
+
"pol",
|
| 180 |
+
"por",
|
| 181 |
+
"ron",
|
| 182 |
+
"rus",
|
| 183 |
+
"slk",
|
| 184 |
+
"slv",
|
| 185 |
+
"sna",
|
| 186 |
+
"snd",
|
| 187 |
+
"som",
|
| 188 |
+
"spa",
|
| 189 |
+
"srp",
|
| 190 |
+
"swe",
|
| 191 |
+
"swh",
|
| 192 |
+
"tam",
|
| 193 |
+
"tel",
|
| 194 |
+
"tgk",
|
| 195 |
+
"tgl",
|
| 196 |
+
"tha",
|
| 197 |
+
"tur",
|
| 198 |
+
"ukr",
|
| 199 |
+
"urd",
|
| 200 |
+
"uzn",
|
| 201 |
+
"vie",
|
| 202 |
+
"yor",
|
| 203 |
+
"yue",
|
| 204 |
+
"zsm",
|
| 205 |
+
"zul",
|
| 206 |
+
]
|
| 207 |
+
TEXT_SOURCE_LANGUAGE_NAMES = sorted([language_code_to_name[code] for code in text_source_language_codes])
|
| 208 |
+
|
| 209 |
+
# Target langs:
|
| 210 |
+
# S2ST / T2ST
|
| 211 |
+
s2st_target_language_codes = [
|
| 212 |
+
"eng",
|
| 213 |
+
"arb",
|
| 214 |
+
"ben",
|
| 215 |
+
"cat",
|
| 216 |
+
"ces",
|
| 217 |
+
"cmn",
|
| 218 |
+
"cym",
|
| 219 |
+
"dan",
|
| 220 |
+
"deu",
|
| 221 |
+
"est",
|
| 222 |
+
"fin",
|
| 223 |
+
"fra",
|
| 224 |
+
"hin",
|
| 225 |
+
"ind",
|
| 226 |
+
"ita",
|
| 227 |
+
"jpn",
|
| 228 |
+
"kor",
|
| 229 |
+
"mlt",
|
| 230 |
+
"nld",
|
| 231 |
+
"pes",
|
| 232 |
+
"pol",
|
| 233 |
+
"por",
|
| 234 |
+
"ron",
|
| 235 |
+
"rus",
|
| 236 |
+
"slk",
|
| 237 |
+
"spa",
|
| 238 |
+
"swe",
|
| 239 |
+
"swh",
|
| 240 |
+
"tel",
|
| 241 |
+
"tgl",
|
| 242 |
+
"tha",
|
| 243 |
+
"tur",
|
| 244 |
+
"ukr",
|
| 245 |
+
"urd",
|
| 246 |
+
"uzn",
|
| 247 |
+
"vie",
|
| 248 |
+
]
|
| 249 |
+
S2ST_TARGET_LANGUAGE_NAMES = sorted([language_code_to_name[code] for code in s2st_target_language_codes])
|
| 250 |
+
T2ST_TARGET_LANGUAGE_NAMES = S2ST_TARGET_LANGUAGE_NAMES
|
| 251 |
+
|
| 252 |
+
# S2TT / T2TT / ASR
|
| 253 |
+
S2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
| 254 |
+
T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
| 255 |
+
ASR_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
main.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from translator import translator
|
| 2 |
+
from lang_list import LANGUAGE_NAME_TO_CODE
|
| 3 |
+
import runpod
|
| 4 |
+
|
| 5 |
+
def run_t2tt(input_text: str, source_language: str, target_language: str) -> str:
|
| 6 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
| 7 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
| 8 |
+
# out_texts, _ = translator.predict(
|
| 9 |
+
# input=input_text,
|
| 10 |
+
# task_str="T2TT",
|
| 11 |
+
# src_lang=source_language_code,
|
| 12 |
+
# tgt_lang=target_language_code,
|
| 13 |
+
# )
|
| 14 |
+
# return str(out_texts[0])
|
| 15 |
+
import json
|
| 16 |
+
return json.dumps({"input_text": input_text, "src_code": source_language_code, "tgt_code": target_language_code})
|
| 17 |
+
|
| 18 |
+
def runpod_handler(job):
|
| 19 |
+
job_input = job['input']
|
| 20 |
+
input_text = job_input["input_text"]
|
| 21 |
+
source_language = job_input["source_language"]
|
| 22 |
+
target_language = job_input["target_language"]
|
| 23 |
+
return run_t2tt(input_text, source_language, target_language)
|
| 24 |
+
|
| 25 |
+
runpod.serverless.start({"handler": runpod_handler})
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.9.0
|
| 2 |
+
omegaconf==2.3.0
|
| 3 |
+
torch==2.1.0
|
| 4 |
+
torchaudio==2.1.0
|
| 5 |
+
runpod
|
test_input.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"input": {
|
| 3 |
+
"input_text": "How are you doing today?",
|
| 4 |
+
"source_language": "English",
|
| 5 |
+
"target_language": "Mandarin Chinese"
|
| 6 |
+
}
|
| 7 |
+
}
|
translator.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pathlib
|
| 3 |
+
import torch
|
| 4 |
+
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
+
from seamless_communication.inference import Translator
|
| 7 |
+
|
| 8 |
+
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models"))
|
| 9 |
+
if not CHECKPOINTS_PATH.exists():
|
| 10 |
+
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)
|
| 11 |
+
asset_store.env_resolvers.clear()
|
| 12 |
+
asset_store.env_resolvers.append(lambda: "demo")
|
| 13 |
+
demo_metadata = [
|
| 14 |
+
{
|
| 15 |
+
"name": "seamlessM4T_v2_large@demo",
|
| 16 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
|
| 17 |
+
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"name": "vocoder_v2@demo",
|
| 21 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/vocoder_v2.pt",
|
| 22 |
+
},
|
| 23 |
+
]
|
| 24 |
+
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))
|
| 25 |
+
|
| 26 |
+
if torch.cuda.is_available():
|
| 27 |
+
device = torch.device("cuda:0")
|
| 28 |
+
dtype = torch.float16
|
| 29 |
+
else:
|
| 30 |
+
device = torch.device("cpu")
|
| 31 |
+
dtype = torch.float32
|
| 32 |
+
|
| 33 |
+
translator = Translator(
|
| 34 |
+
model_name_or_card="seamlessM4T_v2_large",
|
| 35 |
+
vocoder_name_or_card="vocoder_v2",
|
| 36 |
+
device=device,
|
| 37 |
+
dtype=dtype,
|
| 38 |
+
apply_mintox=True,
|
| 39 |
+
)
|
whl/seamless_communication-1.0.0-py3-none-any.whl
ADDED
|
Binary file (202 kB). View file
|
|
|