import json from datetime import datetime, date import gradio as gr import plotly.graph_objects as go def create_big_five_capex_plot() -> go.Figure: # Read data from the JSON Lines file. with open("big_five_capex.jsonl", "r") as file: data = [json.loads(line) for line in file if line.strip()] quarters: list[str] = [entry["Quarter"] for entry in data] companies = ['Microsoft', 'Google', 'Meta', 'Amazon'] colors = ['#80bb00', '#ee161f', '#0065e3', '#ff6200'] x_positions = list(range(len(quarters))) traces = [] for company, color in zip(companies, colors): y_data = [entry[company] for entry in data] traces.append(go.Bar( name=company, x=x_positions, y=y_data, marker_color=color )) fig = go.Figure(data=traces) fig.update_layout( barmode="stack", title="Capital Expenditures of Amazon, Meta, Google and Microsoft in Millions of USD per Quarter", xaxis_title="Quarter", yaxis_title="Capital Expenditures (Millions USD)", xaxis=dict( tickmode='array', tickvals=x_positions, ticktext=quarters ), height=800 ) # Calculate the x position for the vertical dotted line. # We want the line drawn between "2023 Q1" and "2023 Q2". try: idx_q1 = quarters.index("2023 Q1") idx_q2 = quarters.index("2023 Q2") vline_x = (idx_q1 + idx_q2) / 2 # position midway between the two quarters except ValueError: # Fall back if quarters not found. vline_x = 0 # Add a vertical dotted line spanning the full height fig.add_shape( type="line", xref="x", yref="paper", x0=vline_x, y0=0, x1=vline_x, y1=1, line=dict( color="black", dash="dot", width=2 ) ) # Add an annotation label above the vertical line. fig.add_annotation( x=vline_x, y=1.05, # place just above the top of the plotting area xref="x", yref="paper", text="AI arms race begins", showarrow=False, font=dict( color="black", size=12 ), align="center" ) return fig def create_simple_plot(data_path: str, name: str, subtitle: str, start_date: datetime, end_date: datetime, min_value: int = 0, max_value: int = 100, labeled_horizontal_lines: dict[str, float] = None) -> go.Figure: leaderboard = [] with open(data_path, 'r') as file: for line in file: leaderboard.append(json.loads(line)) models = [] with open("models.jsonl", 'r') as file: for line in file: models.append(json.loads(line)) data = [] for entry in leaderboard: model_name = entry['model'] score = entry['score'] model_info = next((m for m in models if m['Name'] == model_name), None) if model_info: release_date = datetime.strptime(model_info['Release Date'], "%Y-%m-%d") data.append({'model': model_name, 'score': score, 'release_date': release_date}) else: print(f"[WARNING] Model '{model_name}' not found in models.jsonl") data.sort(key=lambda x: x['release_date']) x_dates = [d['release_date'] for d in data] y_scores = [] max_score = 0 for entry in data: if entry['score'] > max_score: max_score = entry['score'] y_scores.append(max_score) fig = go.Figure() fig.add_trace(go.Scatter( x=x_dates, y=y_scores, mode='lines', line=dict(shape='hv', width=2), name='Best Score to Date' )) for i, entry in enumerate(data): if i == 0 or y_scores[i] > y_scores[i - 1]: fig.add_trace(go.Scatter( x=[entry['release_date']], y=[entry['score']], mode='markers+text', marker=dict(size=10), text=[entry['model']], textposition="top center", name=entry['model'] )) fig.update_layout( title=f'{name} Over Time
{subtitle}', xaxis_title='Publication or Release Date', yaxis_title=name, hovermode='x unified', xaxis=dict( range=[start_date, end_date], type='date' ), yaxis=dict( range=[min_value, max_value] ), height=800 ) if labeled_horizontal_lines: for label, y_value in labeled_horizontal_lines.items(): fig.add_hline( y=y_value, line_dash="dot", line_color="black", annotation_text=label, annotation_position="right", annotation=dict( font_size=12, font_color="black", xanchor="left", yanchor="middle", xshift=10 ) ) return fig with gr.Blocks() as demo: with gr.Tab("System Performance Over Time"): with gr.Tab("Legend"): legend_markdown: gr.Markdown = gr.Markdown( value=""" ## Benchmarks and Top Scores | Benchmark | Top Score | |-----------|-----------| | Humanity's Last Exam | 🔴 7% | | BigCodeBench | 🟠 36% | | Simple Bench | 🟠 42% | | EMMA-Mini | 🟠 48% | | PlanBench | 🟠 53% | | NYT Connections | 🟡 60% | | GAIA | 🟡 65% | | LiveBench Language | 🟡 65% | | LiveBench Data Analysis | 🟡 71% | | LiveCodeBench | 🟡 73% | | ARC-AGI-Pub (Semi-Private Eval) | 🟡 76% | | LiveBench | 🟡 76% | | GPQA | 🟡 76% | | LiveBench Mathematics | 🟡 81% | | ZebraLogic | 🟡 81% | | LiveBench Coding | 🟡 83% | | ARC-AGI-Pub (Public Eval) | 🟡 83% | | LiveBench IF | 🟡 86% | | ZeroEval | 🟡 86% | | MATH-L5 | 🟡 89% | | LiveBench Reasoning | 🟢 92% | | MMLU-Redux | 🟢 93% | | CRUX | 🟢 96% | ## Colors | Color | Score Range | |-------|------------| | 🔴 Red | Below 30% | | 🟠 Orange | 30% to 60% | | 🟡 Yellow | 60% to 90% | | 🟢 Green | Above 90% |""" ) with gr.Tab("🔴 Humanity's Last Exam") as humanitys_last_exam_tab: humanitys_last_exam_plot: gr.Plot = gr.Plot() humanitys_last_exam_markdown: gr.Markdown = gr.Markdown( value="""Source: [Humanity's Last Exam Quantitative Results](https://lastexam.ai/)""" ) with gr.Tab("🟠 BigCodeBench") as bigcodebench_tab: bigcodebench_plot: gr.Plot = gr.Plot() bigcodebench_markdown: gr.Markdown = gr.Markdown( value="""Source: [BigCodeBench Leaderboard](https://bigcode-bench.github.io/)""" ) with gr.Tab("🟠 Simple Bench") as simple_bench_tab: simple_bench_plot: gr.Plot = gr.Plot() simple_bench_markdown: gr.Markdown = gr.Markdown( value="""Source: [SimpleBench Leaderboard](https://simple-bench.com/)""" ) with gr.Tab("🟠 EMMA-Mini") as emma_tab: emma_plot: gr.Plot = gr.Plot() emma_markdown: gr.Markdown = gr.Markdown( value="""Source: [EMMA Leaderboard](https://emma-benchmark.github.io/#leaderboard)""" ) with gr.Tab("🟠 PlanBench") as planbench_tab: planbench_plot: gr.Plot = gr.Plot() planbench_markdown: gr.Markdown = gr.Markdown( value="""Source: [Valmeekam et al. 2024](https://arxiv.org/abs/2409.13373)""" ) with gr.Tab("🟡 NYT Connections") as nyt_connections_tab: nyt_connections_plot: gr.Plot = gr.Plot() nyt_connections_markdown: gr.Markdown = gr.Markdown( value="""Source: [NYT Connections Leaderboard](https://github.com/lechmazur/nyt-connections)""" ) with gr.Tab("🟡 GAIA") as gaia_tab: gaia_plot: gr.Plot = gr.Plot() gaia_markdown: gr.Markdown = gr.Markdown( value="""Source: [GAIA Leaderboard](https://huggingface.co/spaces/gaia-benchmark/leaderboard)""" ) with gr.Tab("🟡 LiveBench Language") as livebench_language_tab: livebench_language_plot: gr.Plot = gr.Plot() livebench_language_markdown: gr.Markdown = gr.Markdown( value="""Source: [LiveBench Leaderboard](https://livebench.ai/)""" ) with gr.Tab("🟡 LiveBench Data Analysis") as livebench_data_analysis_tab: livebench_data_analysis_plot: gr.Plot = gr.Plot() livebench_data_analysis_markdown: gr.Markdown = gr.Markdown( value="""Source: [LiveBench Leaderboard](https://livebench.ai/)""" ) with gr.Tab("🟡 LiveCodeBench") as livecodebench_tab: livecodebench_plot: gr.Plot = gr.Plot() livecodebench_markdown: gr.Markdown = gr.Markdown( value="""Source: [LiveCodeBench Leaderboard](https://livecodebench.github.io/leaderboard.html)""" ) with gr.Tab("🟡 ARC-AGI-Pub") as arc_agi_tab: with gr.Tab("🟡 Semi-Private Eval") as arc_agi_semi_private_eval_tab: arc_agi_semi_private_eval_plot: gr.Plot = gr.Plot() with gr.Tab("🟡 Public Eval") as arc_agi_public_eval_tab: arc_agi_public_eval_plot: gr.Plot = gr.Plot() arc_agi_markdown: gr.Markdown = gr.Markdown( value="""Source: [ARC Prize 2024](https://arcprize.org/2024-results)""" ) with gr.Tab("🟡 LiveBench") as livebench_tab: livebench_plot: gr.Plot = gr.Plot() livebench_markdown: gr.Markdown = gr.Markdown( value="""Source: [LiveBench Leaderboard](https://livebench.ai/)""" ) with gr.Tab("🟡 GPQA") as gpqa_tab: gpqa_plot: gr.Plot = gr.Plot() gpqa_markdown: gr.Markdown = gr.Markdown( value="""Source: [Epoch AI Benchmarking Dashboard](https://epoch.ai/data/ai-benchmarking-dashboard)""" ) with gr.Tab("🟡 LiveBench Mathematics") as livebench_mathematics_tab: livebench_mathematics_plot: gr.Plot = gr.Plot() livebench_mathematics_markdown: gr.Markdown = gr.Markdown( value="""Source: [LiveBench Leaderboard](https://livebench.ai/)""" ) with gr.Tab("🟡 ZebraLogic") as zeroeval_zebralogic_tab: zeroeval_zebralogic_plot: gr.Plot = gr.Plot() zeroeval_zebralogic_markdown: gr.Markdown = gr.Markdown( value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)""" ) with gr.Tab("🟡 LiveBench Coding") as livebench_coding_tab: livebench_coding_plot: gr.Plot = gr.Plot() livebench_coding_markdown: gr.Markdown = gr.Markdown( value="""Source: [LiveBench Leaderboard](https://livebench.ai/)""" ) with gr.Tab("🟡 LiveBench IF") as livebench_if_tab: livebench_if_plot: gr.Plot = gr.Plot() livebench_if_markdown: gr.Markdown = gr.Markdown( value="""Source: [LiveBench IF](https://livebench.ai/)""" ) with gr.Tab("🟡 ZeroEval") as zeroeval_average_tab: zeroeval_average_plot: gr.Plot = gr.Plot() zeroeval_average_markdown: gr.Markdown = gr.Markdown( value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)""" ) with gr.Tab("🟡 MATH-L5") as zeroeval_math_l5_tab: zeroeval_math_l5_plot: gr.Plot = gr.Plot() zeroeval_math_l5_markdown: gr.Markdown = gr.Markdown( value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)""" ) with gr.Tab("🟢 LiveBench Reasoning") as livebench_reasoning_tab: livebench_reasoning_plot: gr.Plot = gr.Plot() livebench_reasoning_markdown: gr.Markdown = gr.Markdown( value="""Source: [LiveBench Leaderboard](https://livebench.ai/)""" ) with gr.Tab("🟢 MMLU-Redux") as zeroeval_mmlu_redux_tab: zeroeval_mmlu_redux_plot: gr.Plot = gr.Plot() zeroeval_mmlu_redux_markdown: gr.Markdown = gr.Markdown( value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)""" ) with gr.Tab("🟢 CRUX") as zeroeval_crux_tab: zeroeval_crux_plot: gr.Plot = gr.Plot() zeroeval_crux_markdown: gr.Markdown = gr.Markdown( value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)""" ) with gr.Tab("OpenCompass", visible=False): opencompass_plot: gr.Plot = gr.Plot() opencompass_markdown: gr.Markdown = gr.Markdown( value="""Source: [OpenCompass LLM Leaderboard](https://huggingface.co/spaces/opencompass/opencompass-llm-leaderboard)""" ) with gr.Tab("SWE-bench", visible=False): swe_bench_plot: gr.Plot = gr.Plot() swe_bench_markdown: gr.Markdown = gr.Markdown( value="""Source: [SWE-bench Leaderboard](https://www.swebench.com/)""" ) with gr.Tab("SWE-bench Multimodal", visible=False): swe_bench_multimodal_plot: gr.Plot = gr.Plot() swe_bench_multimodal_markdown: gr.Markdown = gr.Markdown( value="""Source: [SWE-bench Leaderboard](https://www.swebench.com/#multimodal)""" ) with gr.Tab("WebArena", visible=False): webarena_plot: gr.Plot = gr.Plot() webarena_markdown: gr.Markdown = gr.Markdown( value="""Source: [X-WebArena-Leaderboard](https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ)""" ) with gr.Tab("OSWorld", visible=False): osworld_plot: gr.Plot = gr.Plot() osworld_markdown: gr.Markdown = gr.Markdown( value="""Source: [OSWorld Benchmark](https://os-world.github.io/)""" ) with gr.Tab("MathVista", visible=False): mathvista_plot: gr.Plot = gr.Plot() mathvista_markdown: gr.Markdown = gr.Markdown( value="""Source: [Leaderboard on MathVista](https://mathvista.github.io/#leaderboard)""" ) with gr.Tab("DABStep", visible=False): dabstep_plot: gr.Plot = gr.Plot() dabstep_markdown: gr.Markdown = gr.Markdown( value="""Source: [DABStep Leaderboard](https://huggingface.co/spaces/adyen/DABstep)""" ) with gr.Tab("lineage-bench", visible=False): lineage_bench_plot: gr.Plot = gr.Plot() lineage_bench_markdown: gr.Markdown = gr.Markdown( value="""Source: [lineage-bench Results](https://github.com/fairydreaming/lineage-bench)""" ) with gr.Tab("Step-Game", visible=False): step_game_plot: gr.Plot = gr.Plot() step_game_markdown: gr.Markdown = gr.Markdown( value="""Source: [Step-Game TrueSkill Leaderboard](https://github.com/lechmazur/step_game)""" ) with gr.Tab("HHEM", visible=False): hhem_plot: gr.Plot = gr.Plot() hhem_markdown: gr.Markdown = gr.Markdown( value="""Source: [Vectara Hallucination Leaderboard](https://github.com/vectara/hallucination-leaderboard)""" ) with gr.Tab("USACO", visible=False): usaco_plot: gr.Plot = gr.Plot() usaco_markdown: gr.Markdown = gr.Markdown( value="""Source: [USACO Leaderboard](https://hal.cs.princeton.edu/usaco)""" ) with gr.Tab("AppWorld", visible=False): appworld_plot: gr.Plot = gr.Plot() appworld_markdown: gr.Markdown = gr.Markdown( value="""Source: [AppWorld Agent Scores](https://appworld.dev/leaderboard)""" ) with gr.Tab("CORE-Bench", visible=False): core_bench_plot: gr.Plot = gr.Plot() core_bench_markdown: gr.Markdown = gr.Markdown( value="""Source: [HAL Leaderboards](https://hal.cs.princeton.edu/#leaderboards)""" ) with gr.Tab("Cybench", visible=False): cybench_plot: gr.Plot = gr.Plot() cybench_markdown: gr.Markdown = gr.Markdown( value="""Source: [Cybench Leaderboard](https://hal.cs.princeton.edu/cybench)""" ) with gr.Tab("MultiChallenge", visible=False): multichallenge_plot: gr.Plot = gr.Plot() multichallenge_markdown: gr.Markdown = gr.Markdown( value="""Source: [SEAL Leaderboard: MultiChallenge](https://scale.com/leaderboard/multichallenge)""" ) with gr.Tab("VISTA", visible=False): vista_plot: gr.Plot = gr.Plot() vista_markdown: gr.Markdown = gr.Markdown( value="""Source: [SEAL Leaderboard: Visual-Language Understanding](https://scale.com/leaderboard/visual_language_understanding)""" ) with gr.Tab("ToolComp", visible=False): with gr.Tab("Enterprise"): toolcomp_enterprise_plot: gr.Plot = gr.Plot() toolcomp_enterprise_markdown: gr.Markdown = gr.Markdown( value="""Source: [SEAL Leaderboard: Agentic Tool Use (Enterprise)](https://scale.com/leaderboard/tool_use_enterprise)""" ) with gr.Tab("Chat"): toolcomp_chat_plot: gr.Plot = gr.Plot() toolcomp_chat_markdown: gr.Markdown = gr.Markdown( value="""Source: [SEAL Leaderboard: Agentic Tool Use (Chat)](https://scale.com/leaderboard/tool_use_chat)""" ) with gr.Tab("BFCL", visible=False): bfcl_plot: gr.Plot = gr.Plot() bfcl_markdown: gr.Markdown = gr.Markdown( value="""Source: [BFCL Leaderboard](https://gorilla.cs.berkeley.edu/leaderboard.html)""" ) with gr.Tab("EvalPlus", visible=False): evalplus_plot: gr.Plot = gr.Plot() evalplus_markdown: gr.Markdown = gr.Markdown( value="""Source: [EvalPlus Leaderboard](https://evalplus.github.io/leaderboard.html)""" ) with gr.Tab("Aider Polyglot", visible=False): aider_plot: gr.Plot = gr.Plot() aider_markdown: gr.Markdown = gr.Markdown( value="""Source: [Aider LLM Leaderboards](https://aider.chat/docs/leaderboards/)""" ) with gr.Tab("QuALITY", visible=False): quality_plot: gr.Plot = gr.Plot() quality_markdown: gr.Markdown = gr.Markdown( value="""Source: [QuALITY Leaderboard](https://nyu-mll.github.io/quality/)""" ) with gr.Tab("MMVU", visible=False): mmvu_plot: gr.Plot = gr.Plot() mmvu_markdown: gr.Markdown = gr.Markdown( value="""Source: [MMVU Leaderboard](https://mmvu-benchmark.github.io/#leaderboard)""" ) with gr.Tab("PhysBench", visible=False): physbench_plot: gr.Plot = gr.Plot() physbench_markdown: gr.Markdown = gr.Markdown( value="""Source: [PhysBench Leaderboard](https://physbench.github.io/#leaderboard)""" ) with gr.Tab("Finance") as finance_tab: with gr.Tab("Big Tech Capex") as big_five_capex_tab: big_five_capex_plot: gr.Plot = gr.Plot() with gr.Tab("NVIDIA Revenue", visible=False) as nvidia_revenue: nvidia_revenue_plot: gr.Plot = gr.Plot() big_five_capex_tab.select(fn=create_big_five_capex_plot, outputs=big_five_capex_plot) arc_agi_public_eval_tab.select(fn=create_simple_plot, inputs=[gr.State("arc_agi_leaderboard.jsonl"), gr.State( "ARC-AGI-Pub Score (Public Eval, $20 Compute Budget per Task, General-Purpose Systems)"), gr.State( "\"ARC can be seen as a general artificial intelligence benchmark, as a program synthesis benchmark, or as a psychometric intelligence test.\" (Chollet, 2019)"), gr.State(date(2024, 6, 20)), gr.State(date(2025, 1, 1)), gr.State(0), gr.State(100), gr.State({"Humans\n(LeGris et al. 2024)": 64.2})], outputs=arc_agi_public_eval_plot) arc_agi_tab.select(fn=create_simple_plot, inputs=[gr.State("arc_agi_semi_private_eval_leaderboard.jsonl"), gr.State( "ARC-AGI-Pub Score (Semi-Private Eval, $20 Compute Budget per Task, General-Purpose Systems)"), gr.State( "\"ARC can be seen as a general artificial intelligence benchmark, as a program synthesis benchmark, or as a psychometric intelligence test.\" (Chollet, 2019)"), gr.State(date(2024, 6, 20)), gr.State(date(2025, 1, 1)), gr.State(0), gr.State(100), gr.State({"MTurkers": 77})], outputs=arc_agi_semi_private_eval_plot) arc_agi_semi_private_eval_tab.select(fn=create_simple_plot, inputs=[gr.State("arc_agi_semi_private_eval_leaderboard.jsonl"), gr.State( "ARC-AGI-Pub Score (Semi-Private Eval, $20 Compute Budget per Task, General-Purpose Systems)"), gr.State( "\"ARC can be seen as a general artificial intelligence benchmark, as a program synthesis benchmark, or as a psychometric intelligence test.\" (Chollet, 2019)"), gr.State(date(2024, 5, 1)), gr.State(date(2025, 1, 1)), gr.State(0), gr.State(100), gr.State({"MTurkers": 77})], outputs=arc_agi_semi_private_eval_plot) finance_tab.select(fn=create_big_five_capex_plot, outputs=big_five_capex_plot) simple_bench_tab.select(fn=create_simple_plot, inputs=[gr.State("simple_bench_leaderboard.jsonl"), gr.State("Simple Bench Score"), gr.State( "\"multiple-choice text benchmark [...] [including] over 200 questions covering spatio-temporal reasoning, social intelligence, and what we call linguistic adversarial robustness\" (Philip & Hemang, 2024)"), gr.State(date(2024, 4, 9)), gr.State(date(2025, 2, 1)), gr.State(0), gr.State(100), gr.State({"Humans": 83.7})], outputs=simple_bench_plot) planbench_tab.select(fn=create_simple_plot, inputs=[gr.State("planbench_leaderboard.jsonl"), gr.State("PlanBench Score (Mystery Blocksworld, 0-shot)"), gr.State( "\"benchmark suite based on the kinds of domains used in the automated planning community [...] to test the capabilities of LLMs in planning or reasoning about actions and change.\" (Valmeekam et al. 2022)"), gr.State(date(2023, 3, 1)), gr.State(date(2024, 9, 20))], outputs=planbench_plot) bigcodebench_tab.select(fn=create_simple_plot, inputs=[gr.State("bigcodebench_hard_average_leaderboard.jsonl"), gr.State("BigCodeBench Score (Hard, Average of Complete and Instruct)"), gr.State( "\"benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks\" (Zhuo et al. 2024)"), gr.State(date(2023, 6, 1)), gr.State(date(2025, 1, 1))], outputs=bigcodebench_plot) gaia_tab.select(fn=create_simple_plot, inputs=[gr.State("gaia_leaderboard.jsonl"), gr.State("General AI Assistants (GAIA) Benchmark Score (Test Set, Average)"), gr.State( "\"real-world questions that require a set of fundamental abilities such as reasoning, multi-modality handling, web browsing, and generally tool-use proficiency\" (Mialon et al. 2023)"), gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1)), gr.State(0), gr.State(100), gr.State({"Humans": 92})], outputs=gaia_plot) gpqa_tab.select(fn=create_simple_plot, inputs=[gr.State("gpqa_leaderboard.jsonl"), gr.State("Graduate-Level Google-Proof Q&A (GPQA) Benchmark Score"), gr.State( "\"challenging dataset of 448 multiple-choice questions written by domain experts in biology, physics, and chemistry [that] are high-quality and extremely difficult\" (Rein et al. 2023)"), gr.State(date(2023, 6, 1)), gr.State(date(2025, 1, 1)), gr.State(25), gr.State(100), gr.State({"Highly skilled non-expert validators": 34, "PhD-level domain experts": 65})], outputs=gpqa_plot) zeroeval_average_tab.select(fn=create_simple_plot, inputs=[gr.State("zeroeval_average_leaderboard.jsonl"), gr.State("ZeroEval Average (MMLU-Redux, ZebraLogic, CRUX and MATH-5) Score"), gr.State( "\"a simple unified framework for evaluating language models on various tasks\" (Ai2, 2024)"), gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))], outputs=zeroeval_average_plot) zeroeval_mmlu_redux_tab.select(fn=create_simple_plot, inputs=[gr.State("zeroeval_mmlu_redux_leaderboard.jsonl"), gr.State( "ZeroEval MMLU-Redux (Massive Multitask Language Understanding) Score"), gr.State( "\"knowledge reasoning\" (Ai2, 2024); \"subset of 3,000 manually re-annotated questions across 30 MMLU subjects\" (Gema et al. 2024)"), gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))], outputs=zeroeval_mmlu_redux_plot) zeroeval_zebralogic_tab.select(fn=create_simple_plot, inputs=[gr.State("zeroeval_zebralogic_leaderboard.jsonl"), gr.State("ZeroEval ZebraLogic Score"), gr.State( "\"logical reasoning\" (Ai2, 2024); \"Each example is a Logic Grid Puzzle [...] often used to test humans' logical reasoning abilities\" (Lin, 2024)"), gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))], outputs=zeroeval_zebralogic_plot) zeroeval_crux_tab.select(fn=create_simple_plot, inputs=[gr.State("zeroeval_crux_leaderboard.jsonl"), gr.State( "ZeroEval CRUX (Code Reasoning, Understanding, and eXecution Evaluation) Score"), gr.State( "\"code reasoning\" (Ai2, 2024); \"benchmark consisting of 800 Python functions (3-13 lines). Each function comes with [...] two natural tasks: input prediction and output prediction.\" (Gu et al. 2024)"), gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))], outputs=zeroeval_crux_plot) zeroeval_math_l5_tab.select(fn=create_simple_plot, inputs=[gr.State("zeroeval_math_l5_leaderboard.jsonl"), gr.State("ZeroEval MATH-L5 (Difficulty Level 5 of MATH) Score"), gr.State( "\"math reasoning\" (Ai2, 2024); \"dataset of 12,500 challenging competition mathematics problems. [...] a subject’s hardest problems are assigned a difficulty level of ‘5.’\" (Hendrycks et al. 2021)"), gr.State(date(2023, 3, 1)), gr.State(date(2025, 1, 1))], outputs=zeroeval_math_l5_plot) livebench_tab.select(fn=create_simple_plot, inputs=[gr.State("livebench.jsonl"), gr.State("LiveBench-2024-11-25: Global Average Score"), gr.State( "\"LiveBench is designed to limit potential contamination by releasing new questions regularly [...] Each question has verifiable, objective ground-truth answers\" (White et al. 2024)"), gr.State(date(2024, 2, 29)), gr.State(date(2025, 2, 1))], outputs=livebench_plot) livebench_reasoning_tab.select(fn=create_simple_plot, inputs=[gr.State("livebench_reasoning.jsonl"), gr.State("LiveBench-2024-11-25: Reasoning Average Score"), gr.State( "\"LiveBench is designed to limit potential contamination by releasing new questions regularly [...] Each question has verifiable, objective ground-truth answers\" (White et al. 2024)"), gr.State(date(2024, 2, 29)), gr.State(date(2025, 2, 1))], outputs=livebench_reasoning_plot) livebench_coding_tab.select(fn=create_simple_plot, inputs=[gr.State("livebench_coding.jsonl"), gr.State("LiveBench-2024-11-25: Coding Average Score"), gr.State( "\"LiveBench is designed to limit potential contamination by releasing new questions regularly [...] Each question has verifiable, objective ground-truth answers\" (White et al. 2024)"), gr.State(date(2024, 2, 29)), gr.State(date(2025, 2, 1))], outputs=livebench_coding_plot) livebench_mathematics_tab.select(fn=create_simple_plot, inputs=[gr.State("livebench_mathematics.jsonl"), gr.State("LiveBench-2024-11-25: Mathematics Average Score"), gr.State( "\"LiveBench is designed to limit potential contamination by releasing new questions regularly [...] Each question has verifiable, objective ground-truth answers\" (White et al. 2024)"), gr.State(date(2024, 2, 29)), gr.State(date(2025, 2, 1))], outputs=livebench_mathematics_plot) livebench_data_analysis_tab.select(fn=create_simple_plot, inputs=[gr.State("livebench_data_analysis.jsonl"), gr.State("LiveBench-2024-11-25: Data Analysis Average Score"), gr.State( "\"LiveBench is designed to limit potential contamination by releasing new questions regularly [...] Each question has verifiable, objective ground-truth answers\" (White et al. 2024)"), gr.State(date(2024, 2, 29)), gr.State(date(2025, 2, 1))], outputs=livebench_data_analysis_plot) livebench_language_tab.select(fn=create_simple_plot, inputs=[gr.State("livebench_language.jsonl"), gr.State("LiveBench-2024-11-25: Language Average Score"), gr.State( "\"LiveBench is designed to limit potential contamination by releasing new questions regularly [...] Each question has verifiable, objective ground-truth answers\" (White et al. 2024)"), gr.State(date(2024, 2, 29)), gr.State(date(2025, 2, 1))], outputs=livebench_language_plot) livebench_if_tab.select(fn=create_simple_plot, inputs=[gr.State("livebench_if.jsonl"), gr.State("LiveBench-2024-11-25: IF Average Score"), gr.State( "\"LiveBench is designed to limit potential contamination by releasing new questions regularly [...] Each question has verifiable, objective ground-truth answers\" (White et al. 2024)"), gr.State(date(2024, 2, 29)), gr.State(date(2025, 2, 1))], outputs=livebench_if_plot) humanitys_last_exam_tab.select(fn=create_simple_plot, inputs=[gr.State("humanitys_last_exam.jsonl"), gr.State("Humanity's Last Exam (Multi-Modal Models Only) Score"), gr.State( "\"multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage\" (Phan et al. 2025)"), gr.State(date(2024, 5, 13)), gr.State(date(2025, 2, 11))], outputs=humanitys_last_exam_plot) livecodebench_tab.select(fn=create_simple_plot, inputs=[gr.State("livecodebench.jsonl"), gr.State("LiveCodeBench (7/1/2024 to 2/1/2025) Score"), gr.State( "\"comprehensive and contamination-free evaluation of LLMs for code, which continuously collects new problems over time from contests across three competition platforms\" (Jain et al. 2024)"), gr.State(date(2024, 4, 9)), gr.State(date(2025, 2, 1))], outputs=livecodebench_plot) emma_tab.select(fn=create_simple_plot, inputs=[gr.State("emma_mini.jsonl"), gr.State("EMMA-Mini (Enhanced MultiModal ReAsoning) Score"), gr.State("\"benchmark targeting organic multimodal reasoning across mathematics, physics, chemistry, and coding\" (Hao et al. 2025)"), gr.State(date(2024, 9, 17)), gr.State(date(2025, 2, 1)), gr.State(22.75), gr.State(100), gr.State({"Human experts": 77.75})], outputs=emma_plot) nyt_connections_tab.select(fn=create_simple_plot, inputs=[gr.State("nyt_connections.jsonl"), gr.State("NYT Connections (Extended Version, Newest 100 Puzzles) Score"), gr.State("\"NYT Connections puzzles [...] To increase difficulty, Extended Connections adds up to four extra trick words to each puzzle.\" (Mazur, 2025)"), gr.State(date(2024, 7, 23)), gr.State(date(2025, 2, 1))], outputs=nyt_connections_plot) if __name__ == "__main__": demo.launch()