Spaces:
Running
Running
File size: 7,774 Bytes
dc4014d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Color Harmonization utility functions.
Some Codes are imported and adopted from https://github.com/tartarskunk/ColorHarmonization
"""
# Import Libraries
import cv2
import numpy as np
import matplotlib.pyplot as plt
import io
# Constants
HueTemplates = {
"i": [(0.00, 0.05)],
"V": [(0.00, 0.26)],
"L": [(0.00, 0.05), (0.25, 0.22)],
"mirror_L": [(0.00, 0.05), (-0.25, 0.22)],
"I": [(0.00, 0.05), (0.50, 0.05)],
"T": [(0.25, 0.50)],
"Y": [(0.00, 0.26), (0.50, 0.05)],
"X": [(0.00, 0.26), (0.50, 0.26)],
}
template_types = list(HueTemplates.keys())
M = len(template_types)
A = 360
def deg_distance(a, b):
d1 = np.abs(a - b)
d2 = np.abs(360 - d1)
d = np.minimum(d1, d2)
return d
def normalized_gaussian(X, mu, S):
X = np.asarray(X).astype(np.float64)
S = np.asarray(S).astype(np.float64)
D = np.deg2rad(X - mu)
S = np.deg2rad(S)
D2 = np.multiply(D, D)
S2 = np.multiply(S, S)
return np.exp(-D2 / (2 * S2))
class HueSector:
def __init__(self, center, width):
# In Degree [0,2 pi)
self.center = center
self.width = width
self.border = [(self.center - self.width / 2), (self.center + self.width / 2)]
def is_in_sector(self, H):
# True/False matrix if hue resides in the sector
return deg_distance(H, self.center) < self.width / 2
def distance_to_border(self, H):
H_1 = deg_distance(H, self.border[0])
H_2 = deg_distance(H, self.border[1])
H_dist2bdr = np.minimum(H_1, H_2)
return H_dist2bdr
def closest_border(self, H):
H_1 = deg_distance(H, self.border[0])
H_2 = deg_distance(H, self.border[1])
H_cls_bdr = np.argmin((H_1, H_2), axis=0)
H_cls_bdr = 2 * (H_cls_bdr - 0.5)
return H_cls_bdr
def distance_to_center(self, H):
H_dist2ctr = deg_distance(H, self.center)
return H_dist2ctr
class HarmonicScheme:
def __init__(self, m, alpha):
self.m = m
self.alpha = alpha
self.reset_sectors()
def reset_sectors(self):
self.sectors = []
for t in HueTemplates[self.m]:
center = t[0] * 360 + self.alpha
width = t[1] * 360
sector = HueSector(center, width)
self.sectors.append(sector)
def harmony_score(self, X):
# Opencv store H as [0, 180) --> [0, 360)
H = X[:, :, 0].astype(np.int32) * 2
# Opencv store S as [0, 255] --> [0, 1]
S = X[:, :, 1].astype(np.float32) / 255.0
H_dis = self.hue_distance(H)
H_dis = np.deg2rad(H_dis)
return np.sum(np.multiply(H_dis, S))
def hue_distance(self, H):
H_dis = []
for i in range(len(self.sectors)):
sector = self.sectors[i]
H_dis.append(sector.distance_to_border(H))
H_dis[i][sector.is_in_sector(H)] = 0
H_dis = np.asarray(H_dis)
H_dis = H_dis.min(axis=0)
return H_dis
def hue_shifted(self, X, num_superpixels=-1):
Y = X.copy()
H = X[:, :, 0].astype(np.int32) * 2
S = X[:, :, 1].astype(np.float32) / 255.0
H_d2b = [sector.distance_to_border(H) for sector in self.sectors]
H_d2b = np.asarray(H_d2b)
H_cls = np.argmin(H_d2b, axis=0)
if num_superpixels != -1:
SEEDS = cv2.ximgproc.createSuperpixelSEEDS(X.shape[1], X.shape[0], X.shape[2], num_superpixels, 10)
SEEDS.iterate(X, 4)
V = np.zeros(H.shape).reshape(-1)
N = V.shape[0]
H_ctr = np.zeros((H.shape))
grid_num = SEEDS.getNumberOfSuperpixels()
labels = SEEDS.getLabels()
for i in range(grid_num):
P = [[], []]
s = np.average(H_cls[labels == i])
if s > 0.5:
s = 1
else:
s = 0
H_cls[labels == i] = s
H_ctr = np.zeros((H.shape))
H_wid = np.zeros((H.shape))
H_d2c = np.zeros((H.shape))
H_dir = np.zeros((H.shape))
for i in range(len(self.sectors)):
sector = self.sectors[i]
mask = (H_cls == i)
H_ctr[mask] = sector.center
H_wid[mask] = sector.width
H_dir += sector.closest_border(H) * mask
H_dist2ctr = sector.distance_to_center(H)
H_d2c += H_dist2ctr * mask
H_sgm = H_wid / 2
H_gau = normalized_gaussian(H_d2c, 0, H_sgm)
H_tmp = np.multiply(H_wid / 2, 1 - H_gau)
H_shf = np.multiply(H_dir, H_tmp)
H_new = (H_ctr + H_shf).astype(np.int32)
for i in range(len(self.sectors)):
sector = self.sectors[i]
mask = sector.is_in_sector(H)
np.copyto(H_new, H, where=sector.is_in_sector(H))
H_new = np.remainder(H_new, 360)
H_new = (H_new / 2).astype(np.uint8)
Y[:, :, 0] = H_new
return Y
def count_hue_histogram(X):
N = 360
H = X[:, :, 0].astype(np.int32) * 2
S = X[:, :, 1].astype(np.float64) / 255.0
H_flat = H.flatten()
S_flat = S.flatten()
histo = np.zeros(N)
for i in range(len(H_flat)):
histo[H_flat[i]] += S_flat[i]
return histo
def plothis(hue_histo, harmonic_scheme, caption: str):
N = 360
# Compute pie slices
theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
width = np.pi / 180
# Compute colors, RGB values for the hue
hue_colors = np.zeros((N, 4))
for i in range(hue_colors.shape[0]):
color_HSV = np.zeros((1, 1, 3), dtype=np.uint8)
color_HSV[0, 0, :] = [int(i / 2), 255, 255]
color_BGR = cv2.cvtColor(color_HSV, cv2.COLOR_HSV2BGR)
B = int(color_BGR[0, 0, 0]) / 255.0
G = int(color_BGR[0, 0, 1]) / 255.0
R = int(color_BGR[0, 0, 2]) / 255.0
hue_colors[i] = (R, G, B, 1.0)
# Compute colors, for the shadow
shadow_colors = np.zeros((N, 4))
for i in range(shadow_colors.shape[0]):
shadow_colors[i] = (0.0, 0.0, 0.0, 1.0)
# Create hue, guidline and shadow arrays
hue_histo = hue_histo.astype(float)
hue_histo_msx = float(np.max(hue_histo))
if hue_histo_msx != 0.0:
hue_histo /= np.max(hue_histo)
guide_histo = np.array([0.05] * N)
shadow_histo = np.array([0.0] * N)
# Compute angels of shadow, template types
for sector in harmonic_scheme.sectors:
sector_center = sector.center
sector_width = sector.width
end = int((sector_center + sector_width / 2) % 360)
start = int((sector_center - sector_width / 2) % 360)
if start < end:
shadow_histo[start: end] = 1.0
else:
shadow_histo[start: 360] = 1.0
shadow_histo[0: end] = 1.0
# Plot, 1280 * 800
fig = plt.figure(figsize=(3.2, 4))
ax = fig.add_subplot(111, projection='polar')
# add hue histogram
ax.bar(theta, hue_histo, width=width, bottom=0.0, color=hue_colors, alpha=1.0)
# add guidline
ax.bar(theta, guide_histo, width=width, bottom=1.0, color=hue_colors, alpha=1.0)
# add shadow angels for the template types
ax.bar(theta, shadow_histo, width=width, bottom=0.0, color=shadow_colors, alpha=0.1)
ax.set_title(caption, pad=15)
plt.close()
return fig
# https://stackoverflow.com/questions/7821518/matplotlib-save-plot-to-numpy-array
def get_img_from_fig(fig, dpi=100):
"""
a function which returns an image as numpy array from figure
"""
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=dpi)
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
return img
|