Spaces:
Runtime error
Runtime error
Remove quantization_config entirely to avoid bitsandbytes dependency3
Browse files- app.py +7 -32
- requirements.txt +1 -2
app.py
CHANGED
@@ -1,38 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import accelerate
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
# Load the
|
8 |
-
|
9 |
-
|
10 |
-
)
|
11 |
-
# Remove quantization-related attributes from the config
|
12 |
-
original_config._load_in_4bit = False
|
13 |
-
original_config._load_in_8bit = False
|
14 |
-
original_config.quant_method = None
|
15 |
-
|
16 |
-
original_model = AutoModelForCausalLM.from_pretrained(
|
17 |
-
"unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit",
|
18 |
-
config=original_config # Use the overridden configuration
|
19 |
-
)
|
20 |
-
original_tokenizer = AutoTokenizer.from_pretrained("unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit")
|
21 |
-
|
22 |
-
# Load the fine-tuned model with overridden configuration
|
23 |
-
fine_tuned_config = AutoConfig.from_pretrained(
|
24 |
-
"kas1/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-John1"
|
25 |
-
)
|
26 |
-
# Remove quantization-related attributes from the config
|
27 |
-
fine_tuned_config._load_in_4bit = False
|
28 |
-
fine_tuned_config._load_in_8bit = False
|
29 |
-
fine_tuned_config.quant_method = None
|
30 |
-
|
31 |
-
fine_tuned_model = AutoModelForCausalLM.from_pretrained(
|
32 |
-
"kas1/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-John1",
|
33 |
-
config=fine_tuned_config # Use the overridden configuration
|
34 |
-
)
|
35 |
-
fine_tuned_tokenizer = AutoTokenizer.from_pretrained("kas1/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-John1")
|
36 |
|
37 |
# Function to generate responses from both models
|
38 |
def compare_models(prompt):
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
|
4 |
+
# Load the original model
|
5 |
+
original_model = AutoModelForCausalLM.from_pretrained("unsloth/DeepSeek-R1-Distill-Llama-8B")
|
6 |
+
original_tokenizer = AutoTokenizer.from_pretrained("unsloth/DeepSeek-R1-Distill-Llama-8B")
|
7 |
|
8 |
+
# Load the fine-tuned model
|
9 |
+
fine_tuned_model = AutoModelForCausalLM.from_pretrained("kas1/DeepSeek-R1-Distill-Llama-8B-John1")
|
10 |
+
fine_tuned_tokenizer = AutoTokenizer.from_pretrained("kas1/DeepSeek-R1-Distill-Llama-8B-John1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Function to generate responses from both models
|
13 |
def compare_models(prompt):
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
torch
|
2 |
transformers
|
3 |
-
gradio
|
4 |
-
accelerate>=0.26.0
|
|
|
1 |
torch
|
2 |
transformers
|
3 |
+
gradio
|
|