Spaces:
Runtime error
Runtime error
Remove quantization_config entirely to avoid bitsandbytes dependency3
Browse files- app.py +7 -32
- requirements.txt +1 -2
app.py
CHANGED
|
@@ -1,38 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
-
import accelerate
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# Load the
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
)
|
| 11 |
-
# Remove quantization-related attributes from the config
|
| 12 |
-
original_config._load_in_4bit = False
|
| 13 |
-
original_config._load_in_8bit = False
|
| 14 |
-
original_config.quant_method = None
|
| 15 |
-
|
| 16 |
-
original_model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
-
"unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit",
|
| 18 |
-
config=original_config # Use the overridden configuration
|
| 19 |
-
)
|
| 20 |
-
original_tokenizer = AutoTokenizer.from_pretrained("unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit")
|
| 21 |
-
|
| 22 |
-
# Load the fine-tuned model with overridden configuration
|
| 23 |
-
fine_tuned_config = AutoConfig.from_pretrained(
|
| 24 |
-
"kas1/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-John1"
|
| 25 |
-
)
|
| 26 |
-
# Remove quantization-related attributes from the config
|
| 27 |
-
fine_tuned_config._load_in_4bit = False
|
| 28 |
-
fine_tuned_config._load_in_8bit = False
|
| 29 |
-
fine_tuned_config.quant_method = None
|
| 30 |
-
|
| 31 |
-
fine_tuned_model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
-
"kas1/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-John1",
|
| 33 |
-
config=fine_tuned_config # Use the overridden configuration
|
| 34 |
-
)
|
| 35 |
-
fine_tuned_tokenizer = AutoTokenizer.from_pretrained("kas1/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-John1")
|
| 36 |
|
| 37 |
# Function to generate responses from both models
|
| 38 |
def compare_models(prompt):
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 3 |
|
| 4 |
+
# Load the original model
|
| 5 |
+
original_model = AutoModelForCausalLM.from_pretrained("unsloth/DeepSeek-R1-Distill-Llama-8B")
|
| 6 |
+
original_tokenizer = AutoTokenizer.from_pretrained("unsloth/DeepSeek-R1-Distill-Llama-8B")
|
| 7 |
|
| 8 |
+
# Load the fine-tuned model
|
| 9 |
+
fine_tuned_model = AutoModelForCausalLM.from_pretrained("kas1/DeepSeek-R1-Distill-Llama-8B-John1")
|
| 10 |
+
fine_tuned_tokenizer = AutoTokenizer.from_pretrained("kas1/DeepSeek-R1-Distill-Llama-8B-John1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Function to generate responses from both models
|
| 13 |
def compare_models(prompt):
|
requirements.txt
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
-
gradio
|
| 4 |
-
accelerate>=0.26.0
|
|
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
+
gradio
|
|
|