Spaces:
Runtime error
Runtime error
import os | |
from typing import Any, Dict, List | |
# for vector search | |
import pinecone # cloud-hosted vector database for context retrieval | |
# for auto-gpu selection | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import Pinecone | |
# load custom code | |
from clip_for_ppts import ClipImage | |
# from gpu_memory_utils import (get_device_with_most_free_memory, | |
# get_free_memory_dict, | |
# get_gpu_ids_with_sufficient_memory) | |
# from PIL import Image | |
LECTURE_SLIDES_DIR = os.path.join(os.getcwd(), "lecture_slides") | |
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY") | |
class Retrieval: | |
def __init__(self, device='cuda', use_clip=True): | |
self.user_question = '' | |
self.max_text_length = None | |
self.pinecone_index_name = 'uiuc-chatbot' # uiuc-chatbot-v2 | |
self.use_clip = use_clip | |
self.clip_search_class = None | |
# init parameters | |
self.device = device | |
self.num_answers_generated = 3 | |
self.vectorstore = None | |
# Load everything into cuda memory | |
self.load_modules() | |
def load_modules(self): | |
self._load_pinecone_vectorstore() | |
if self.use_clip: | |
self._load_clip() | |
else: | |
print("CLIP IS MANUALLY DISABLED for speed.. REENABLE LATER. ") | |
def _load_pinecone_vectorstore(self,): | |
model_name = "intfloat/e5-large" # best text embedding model. 1024 dims. | |
embeddings = HuggingFaceEmbeddings(model_name=model_name) | |
#pinecone.init(api_key=os.environ['PINECONE_API_KEY'], environment="us-west1-gcp") | |
pinecone.init(api_key=PINECONE_API_KEY, environment="us-west1-gcp") | |
pincecone_index = pinecone.Index("uiuc-chatbot") | |
self.vectorstore = Pinecone(index=pincecone_index, embedding_function=embeddings.embed_query, text_key="text") | |
def retrieve_contexts_from_pinecone(self, user_question: str, topk: int = None) -> List[Any]: | |
''' | |
Invoke Pinecone for vector search. These vector databases are created in the notebook `data_formatting_patel.ipynb` and `data_formatting_student_notes.ipynb`. | |
Returns a list of LangChain Documents. They have properties: `doc.page_content`: str, doc.metadata['page_number']: int, doc.metadata['textbook_name']: str. | |
''' | |
try: | |
# catch other models that have different prompting | |
user_question = user_question.split("<|prompter|>")[-1] | |
except Exception as e: | |
print("Failed to split user question: ", e) | |
if topk is None: | |
topk = self.num_answers_generated | |
# similarity search | |
top_context_list = self.vectorstore.similarity_search(user_question, k=topk) | |
# add the source info to the bottom of the context. | |
top_context_metadata = [f"Source: page {doc.metadata['page_number']} in {doc.metadata['textbook_name']}" for doc in top_context_list] | |
relevant_context_list = [f"{text.page_content}. {meta}" for text, meta in zip(top_context_list, top_context_metadata)] | |
return relevant_context_list | |
def _load_clip(self): | |
self.clip_search_class = ClipImage(path_of_ppt_folders=LECTURE_SLIDES_DIR, | |
path_to_save_image_features=os.getcwd(), | |
mode='text', | |
device='cuda') | |
def reverse_img_search(self, img): | |
imgs = self.clip_search_class.image_to_images_search(img) | |
img_path_list = [] | |
for img in imgs: | |
img_path_list.append(os.path.join(LECTURE_SLIDES_DIR, img[0], img[1])) | |
return img_path_list | |
def clip_text_to_image(self, search_question: str, num_images_returned: int = 4): | |
""" | |
Run CLIP | |
Returns a list of images in all cases. | |
""" | |
imgs = self.clip_search_class.text_to_image_search(search_text=search_question, top_k_to_return=num_images_returned) | |
img_path_list = [] | |
for img in imgs: | |
img_path_list.append(os.path.join(LECTURE_SLIDES_DIR, img[0], img[1])) | |
return img_path_list |