import gradio as gr from transformers import LlavaOnevisionProcessor, LlavaOnevisionForConditionalGeneration, TextIteratorStreamer from threading import Thread import re import time from PIL import Image import torch import cv2 import spaces model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf" processor = LlavaOnevisionProcessor.from_pretrained(model_id) model = LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16) model.to("cuda") def sample_frames(video_file, num_frames): video = cv2.VideoCapture(video_file) total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) interval = total_frames // num_frames frames = [] for i in range(total_frames): ret, frame = video.read() pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) if not ret: continue if i % interval == 0: frames.append(pil_img) video.release() return frames @spaces.GPU def bot_streaming(message, history): txt = message.text ext_buffer = f"user\n{txt} assistant" if message.files: if len(message.files) == 1: image = [message.files[0].path] # interleaved images or video elif len(message.files) > 1: image = [msg.path for msg in message.files] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0])==tuple: image = hist[0][0] if message.files is None: gr.Error("You need to upload an image or video for LLaVA to work.") video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg") image_extensions = Image.registered_extensions() image_extensions = tuple([ex for ex, f in image_extensions.items()]) if len(image) == 1: if image[0].endswith(video_extensions): video = sample_frames(image[0], 32) image = None prompt = f"<|im_start|>user <video>\n{message.text}<|im_end|><|im_start|>assistant" elif image[0].endswith(image_extensions): image = Image.open(image[0]).convert("RGB") video = None prompt = f"<|im_start|>user <image>\n{message.text}<|im_end|><|im_start|>assistant" elif len(image) > 1: image_list = [] user_prompt = message.text for img in image: if img.endswith(image_extensions): img = Image.open(img).convert("RGB") image_list.append(img) elif img.endswith(video_extensions): frames = sample_frames(img, 6) for frame in frames: image_list.append(frame) toks = "<image>" * len(image_list) prompt = "<|im_start|>user"+ toks + f"\n{user_prompt}<|im_end|><|im_start|>assistant" image = image_list video = None inputs = processor(text=prompt, images=image, videos=video, return_tensors="pt").to("cuda", torch.float16) streamer = TextIteratorStreamer(processor, **{"max_new_tokens": 200, "skip_special_tokens": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer[len(ext_buffer):] time.sleep(0.01) yield generated_text_without_prompt demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Onevision", examples=[ {"text": "Do the cats in these two videos have same breed? What breed is each cat?", "files":["./cats_1.mp4", "./cats_2.mp4"]}, {"text": "These are the tech specs of two laptops I am choosing from. Which one should I choose for office work?", "files":["./dell-tech-specs.jpeg", "./asus-tech-specs.png"]}, {"text": "Here are several images from a cooking book, showing how to prepare a meal step by step. Can you write a recipe for the meal, describing each step in details?", "files":["./step0.png", "./step1.png", "./step2.png", "./step3.png", "./step4.png", "./step5.png"]}, {"text": "What is on the flower?", "files":["./bee.jpg"]}, {"text": "This is a video explaining how to create a Presentation in GoogleSlides. Can you write down what I should do step by step, following the video?", "files":["./tutorial.mp4"]}], textbox=gr.MultimodalTextbox(file_count="multiple"), description="Try [LLaVA Onevision](https://huggingface.co/docs/transformers/main/en/model_doc/llava_onevision) in this demo (more specifically, the [Qwen-2-0.5B-Instruct variant](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf)). Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. ", stop_btn="Stop Generation", multimodal=True) demo.launch(debug=True)