File size: 45,570 Bytes
202eff6
 
 
 
 
 
 
 
 
 
 
 
6ba63c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected]), Ziyi Dou, Jianwei Yang
# --------------------------------------------------------

from typing import Tuple
import random

import torch
from torch import nn
from torch.nn import functional as F
import numpy as np

from timm.models.layers import trunc_normal_
from nltk.stem.lancaster import LancasterStemmer
from detectron2.structures import Boxes, ImageList, Instances, BitMasks, BoxMode
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.data import MetadataCatalog

from .build import register_model
from ..utils import configurable, get_class_names
from ..vision.backbone import build_backbone, Backbone
from ..body import build_xdecoder_head
from ..modules import sem_seg_postprocess, SetCriterion, HungarianMatcher, bbox_postprocess
from ..language import build_language_encoder
from ..language.loss import vl_similarity, image_text_contrastive_loss_queue
from utilities.prompt_engineering import prompt_engineering
from utilities.constants import COCO_PANOPTIC_CLASSES

st = LancasterStemmer()


class GeneralizedXdecoder(nn.Module):

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        criterion: nn.Module,
        losses: dict,
        num_queries: int,
        object_mask_threshold: float,
        overlap_threshold: float,
        metadata,
        task_switch: dict,
        phrase_prob: float,
        size_divisibility: int,
        sem_seg_postprocess_before_inference: bool,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        # inference
        semantic_on: bool,
        panoptic_on: bool,
        instance_on: bool,
        test_topk_per_image: int,
        train_dataset_name: str,
        retrieval_emsemble: bool,
        backbone_dim: int,
        dim_proj: int,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
            criterion: a module that defines the loss
            num_queries: int, number of queries
            object_mask_threshold: float, threshold to filter query based on classification score
                for panoptic segmentation inference
            overlap_threshold: overlap threshold used in general inference for panoptic segmentation
            metadata: dataset meta, get `thing` and `stuff` category names for panoptic
                segmentation inference
            size_divisibility: Some backbones require the input height and width to be divisible by a
                specific integer. We can use this to override such requirement.
            sem_seg_postprocess_before_inference: whether to resize the prediction back
                to original input size before semantic segmentation inference or after.
                For high-resolution dataset like Mapillary, resizing predictions before
                inference will cause OOM error.
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            semantic_on: bool, whether to output semantic segmentation prediction
            instance_on: bool, whether to output instance segmentation prediction
            panoptic_on: bool, whether to output panoptic segmentation prediction
            test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
        """
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        self.criterion = criterion
        self.losses = losses
        self.num_queries = num_queries
        self.overlap_threshold = overlap_threshold
        self.object_mask_threshold = object_mask_threshold
        self.metadata = metadata
        if size_divisibility < 0:
            # use backbone size_divisibility if not set
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility
        self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

        # additional args
        self.semantic_on = semantic_on
        self.instance_on = instance_on
        self.panoptic_on = panoptic_on

        # caption argument
        self.task_switch = task_switch
        self.phrase_prob = phrase_prob

        self.test_topk_per_image = test_topk_per_image
        self.train_class_names = get_class_names(train_dataset_name)

        self.retrieval_emsemble = retrieval_emsemble
        # backbone itc loss
        if task_switch['retrieval'] and retrieval_emsemble:
            self.backbone_proj = nn.Parameter(torch.empty(backbone_dim, dim_proj))
            trunc_normal_(self.backbone_proj, std=.02)

        if not self.semantic_on:
            assert self.sem_seg_postprocess_before_inference

    @classmethod
    def from_config(cls, cfg):
        enc_cfg = cfg['MODEL']['ENCODER']
        dec_cfg = cfg['MODEL']['DECODER']

        # Loss parameters:
        deep_supervision = dec_cfg['DEEP_SUPERVISION']
        no_object_weight = dec_cfg['NO_OBJECT_WEIGHT']

        # loss weights, switcher for task, and top layers to compute loss
        loss_weights = {'mask': {'ce': dec_cfg['CLASS_WEIGHT'], 'dice': dec_cfg['DICE_WEIGHT'], 'bce': dec_cfg['MASK_WEIGHT']},
                        'bbox': {'l1': dec_cfg['BBOX_WEIGHT'], 'giou': dec_cfg['GIOU_WEIGHT']},
                        'caption': dec_cfg['CAPTION_WEIGHT'],
                        'captioning': dec_cfg['CAPTIONING_WEIGHT'], 
                        'retrieval': {'decoder': dec_cfg['RETRIEVAL_WEIGHT'], 'backbone': dec_cfg['BACKBONER_WEIGHT']},
                        'grounding': {'ce': dec_cfg['GCLASS_WEIGHT'], 'dice': dec_cfg['GDICE_WEIGHT'], 'bce': dec_cfg['GMASK_WEIGHT']}}

        task_switch = {'bbox': dec_cfg.get('DETECTION', False),
                       'mask': dec_cfg.get('MASK', True),
                       'caption': dec_cfg['CAPTION'].get('ENABLED', False),
                       'captioning': dec_cfg['CAPTIONING'].get('ENABLED', False),
                       'retrieval': dec_cfg['RETRIEVAL'].get('ENABLED', False),
                       'grounding': dec_cfg['GROUNDING'].get('ENABLED', False)}

        top_x_layers = {'mask': dec_cfg.get('TOP_MASK_LAYERS', 10),
                        'caption': dec_cfg.get('TOP_CAPTION_LAYERS', 10), 
                        'captioning': dec_cfg.get('TOP_CAPTIONING_LAYERS', 10),
                        'retrieval': dec_cfg.get('TOP_RETRIEVAL_LAYERS', 10),
                        'grounding': dec_cfg.get('TOP_GROUNDING_LAYERS', 10),}

        # build model
        extra = {'task_switch': task_switch}
        backbone = build_backbone(cfg)
        lang_encoder = build_language_encoder(cfg)        
        sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra)

        # building criterion
        matcher = HungarianMatcher(
            cost_class=loss_weights['mask']['ce'],
            cost_mask=loss_weights['mask']['bce'],
            cost_dice=loss_weights['mask']['dice'],
            num_points=dec_cfg['TRAIN_NUM_POINTS'],
        )

        # init weight dict and criterion loss functions.
        losses = {'seg': [], 'vlp': []}
        if task_switch['mask']:
            losses['seg'] += ["labels", "masks"]
        if task_switch['caption']:
            losses['seg'] += ["captions"]
        if task_switch['grounding']:
            losses['seg'] += ["groundings"]
        if task_switch['captioning']:
            losses['vlp'] += ["captionings"]
        if task_switch['retrieval']:
            losses['vlp'] += ["retrievals"]

        weight_dict = {}
        for key, turn_on in task_switch.items():
            if turn_on:
                if isinstance(loss_weights[key], dict):
                    # HACK it should support bbox in the future
                    for key_, weight in loss_weights[key].items():
                        weight_dict["loss_{}_{}_0".format(key, key_)] = weight # NOTE: hard code for segmentation that has multiple loss
                else:
                    weight_dict["loss_{}_0".format(key)] = loss_weights[key]
        
        # generate full weight dict and remove not computed layers. 
        if deep_supervision:
            dec_layers = dec_cfg['DEC_LAYERS']
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                for k, v in weight_dict.items():
                    if (i+1) > (top_x_layers[k.split('_')[1]] - 1):
                        continue
                    aux_weight_dict.update({k.replace('_0', f"_{i+1}"): v})
            weight_dict.update(aux_weight_dict)

        grd_weight = {'text': dec_cfg['GROUNDING']['TEXT_WEIGHT'], 'class': dec_cfg['GROUNDING']['CLASS_WEIGHT']}
        # generate critenrion for loss function.
        criterion = SetCriterion(
            sem_seg_head.num_classes,
            matcher=matcher,
            weight_dict=weight_dict,
            top_x_layers=top_x_layers,
            eos_coef=no_object_weight,
            losses=[],
            num_points=dec_cfg['TRAIN_NUM_POINTS'],
            oversample_ratio=dec_cfg['OVERSAMPLE_RATIO'],
            importance_sample_ratio=dec_cfg['IMPORTANCE_SAMPLE_RATIO'],
            grounding_weight=grd_weight,
        )

        # extra logistic
        train_dataset_name = cfg['DATASETS']['TRAIN'][0] # HACK for only one training set.
        phrase_prob = dec_cfg['CAPTION'].get('PHRASE_PROB', 0.5)

        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "criterion": criterion,
            "losses": losses,
            "num_queries": dec_cfg['NUM_OBJECT_QUERIES'],
            "object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'],
            "overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'],
            "metadata": MetadataCatalog.get(cfg['DATASETS']['TRAIN'][0]),
            "size_divisibility": dec_cfg['SIZE_DIVISIBILITY'],
            "sem_seg_postprocess_before_inference": (
                dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE']
                or dec_cfg['TEST']['PANOPTIC_ON']
                or dec_cfg['TEST']['INSTANCE_ON']
            ),
            "pixel_mean": cfg['INPUT']['PIXEL_MEAN'],
            "pixel_std": cfg['INPUT']['PIXEL_STD'],
            "task_switch": task_switch,
            "phrase_prob": phrase_prob,
            # inference
            "semantic_on": dec_cfg['TEST']['SEMANTIC_ON'],
            "instance_on": dec_cfg['TEST']['INSTANCE_ON'],
            "panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'],
            "test_topk_per_image": cfg['COCO']['TEST']['DETECTIONS_PER_IMAGE'],
            "train_dataset_name": train_dataset_name,
            "retrieval_emsemble": dec_cfg['RETRIEVAL']['ENSEMBLE'],
            "backbone_dim": cfg['MODEL']['BACKBONE_DIM'],
            "dim_proj": cfg['MODEL']['DIM_PROJ'],
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs, mode=None):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
                * "panoptic_seg":
                    A tuple that represent panoptic output
                    panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
                    segments_info (list[dict]): Describe each segment in `panoptic_seg`.
                        Each dict contains keys "id", "category_id", "isthing".
        """
        if self.training:
            losses = {}
            if self.task_switch['mask']:
                losses_seg = self.forward_seg(batched_inputs['coco'])
                losses.update(losses_seg)
            if self.task_switch['retrieval'] or self.task_switch['captioning']:
                losses_vlp = self.forward_vlp(batched_inputs['vlp'])
                losses.update(losses_vlp)
            for k in list(losses.keys()):
                if k in self.criterion.weight_dict:
                    losses[k] *= self.criterion.weight_dict[k]
                else: # remove this loss if not specified in `weight_dict`
                    losses.pop(k)
            return losses
        else:
            if mode == 'retrieval':
                return self.evaluate_retrieval(batched_inputs)
            elif mode == 'captioning':
                return self.evaluate_captioning(batched_inputs)
            elif mode == 'classification':
                return self.evaluate_classification(batched_inputs)
            elif mode == 'grounding_refcoco':
                return self.evaluate_grounding(batched_inputs, mode)
            else:
                return self.evaluate(batched_inputs)

        
    def forward_seg(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(self.train_class_names, is_eval=False)

        extra = {}
        # mask classification target
        if "instances" in batched_inputs[0]:
            # input bounding box is checked to be correct.
            targets = self.prepare_targets(batched_inputs, images)

            if self.task_switch['grounding']:
                grounding_tokens = [x['grounding_query_embs'] for x in targets] # need to pad for more than one grounding token
                grounding_tokens = nn.utils.rnn.pad_sequence(grounding_tokens)
                extra['grounding_tokens'] = grounding_tokens

        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, extra=extra)

        _outputs = {}
        for key, value in outputs.items():
            if key == 'pred_logits':
                _outputs[key] = value[:,:self.num_queries-1]
            elif key == 'pred_masks':
                _outputs[key] = value[:,:self.num_queries-1]
                if self.task_switch['grounding']:
                    _outputs['pred_gmasks'] = value[:,self.num_queries:2*self.num_queries-1]
            elif key == 'pred_captions':
                _outputs[key] = value[:,:self.num_queries-1]
                if self.task_switch['grounding']:
                    _outputs['pred_gtexts'] = value[:,self.num_queries:2*self.num_queries-1]
            elif key == 'aux_outputs':
                _outputs[key] = []
                for i in range(len(value)):
                    _outputs[key] += [{}]
                    for _key, _value in value[i].items():
                        if _key == 'pred_logits':
                            _outputs[key][i][_key] = _value[:,:self.num_queries-1]
                        elif _key == 'pred_masks':
                            _outputs[key][i][_key] = _value[:,:self.num_queries-1]
                            if self.task_switch['grounding']:
                                _outputs[key][i]['pred_gmasks'] = _value[:,self.num_queries:2*self.num_queries-1]
                        elif _key == 'pred_captions':
                            _outputs[key][i][_key] = _value[:,:self.num_queries-1]
                            if self.task_switch['grounding']:
                                _outputs[key][i]['pred_gtexts'] = _value[:,self.num_queries:2*self.num_queries-1]        
        outputs = _outputs

        extra = {'lang_logit': self.sem_seg_head.predictor.lang_encoder.logit_scale,
                 'class_embeddings': getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('default'))}

        # bipartite matching-based loss
        self.criterion.losses = self.losses['seg'] # seg criterion losses
        losses = self.criterion(outputs, targets, extra)

        del outputs
        del _outputs
        return losses

    def forward_vlp(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        targets_vlp = self.prepare_vlp_targets(batched_inputs, images.tensor.device)

        extra = {"token_embedding": self.sem_seg_head.predictor.lang_encoder.lang_encoder.token_embedding,
                 "lang_encoder": self.sem_seg_head.predictor.lang_encoder,
                 "training": self.training}

        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=None, target_vlp=targets_vlp, task='vlp', extra=extra)

        for key, value in outputs.items():
            if key == 'pred_captionings':
                outputs[key] = value
            elif key == 'pred_captions':
                # outputs[key] = value[:,-1:]
                outputs[key] = value
            elif key == 'aux_outputs':
                outputs[key] = []
                for i in range(len(value)):
                    outputs[key] += [{}]
                    for _key, _value in value[i].items():
                        if _key == 'pred_captions':
                            # outputs[key][i][_key] = _value[:,-1:]
                            outputs[key][i][_key] = _value
                        elif _key == 'pred_captionings':
                            outputs[key][i][_key] = _value

        self.criterion.losses = self.losses['vlp'] # seg criterion losses
        losses = self.criterion.forward_vlp(outputs, targets_vlp, extra)
        del outputs

        if self.task_switch['retrieval'] and self.retrieval_emsemble:
            # compute backbone vlp.
            v_emb = features['res5']
            bs,nc,_,_ = v_emb.shape
            v_emb = v_emb.reshape(bs,nc,-1)
            v_emb = F.adaptive_avg_pool1d(v_emb, 1).reshape(bs,nc) @ self.backbone_proj
            t_emb = torch.cat([x['caption_proj'] for x in targets_vlp], dim=0)
            loss_contrast = image_text_contrastive_loss_queue(v_emb, t_emb, self.sem_seg_head.predictor.lang_encoder, None)
            losses['loss_retrieval_backbone_0'] = loss_contrast
        return losses

    def evaluate(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]

        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=queries_grounding)

        mask_cls_results = outputs["pred_logits"]
        mask_pred_results = outputs["pred_masks"]
        box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))]
        caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]

        # upsample masks
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(images.tensor.shape[-2], images.tensor.shape[-1]),
            mode="bicubic",
            align_corners=False,
            antialias=True
        )

        input_size = mask_pred_results.shape[-2:]
        keep_sem_bgd = self.metadata.keep_sem_bgd if hasattr(self.metadata, 'keep_sem_bgd') else False
        del outputs

        processed_results = []
        for mask_cls_result, mask_pred_result, box_pred_result, caption_pred_result, input_per_image, image_size in zip(
            mask_cls_results, mask_pred_results, box_pred_results, caption_pred_results, batched_inputs, images.image_sizes
        ):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            processed_results.append({})

            if self.sem_seg_postprocess_before_inference:
                mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
                    mask_pred_result, image_size, height, width
                )
                mask_cls_result = mask_cls_result.to(mask_pred_result)

            # semantic segmentation inference
            if self.semantic_on:
                r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result, keep_sem_bgd)
                if not self.sem_seg_postprocess_before_inference:
                    r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
                processed_results[-1]["sem_seg"] = r

            # panoptic segmentation inference
            if self.panoptic_on:
                panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
                processed_results[-1]["panoptic_seg"] = panoptic_r
            
            # instance segmentation inference
            if self.instance_on:
                if self.task_switch['bbox']:
                    box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width)
                instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result)
                processed_results[-1]["instances"] = instance_r
            if self.task_switch['caption']:
                processed_results[-1]["captions"] = caption_pred_result
                processed_results[-1]["masks"] = mask_pred_result

        return processed_results

    def evaluate_retrieval(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]
        
        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=queries_grounding)
        v_emb_it = outputs['pred_captions'][:,-1]

        # compute backbone score
        if self.task_switch['retrieval'] and self.retrieval_emsemble:
            _v_emb_it = features['res5']
            bs,nc,_,_ = _v_emb_it.shape
            _v_emb_it = _v_emb_it.reshape(bs,nc,-1)
            _v_emb_it = F.adaptive_avg_pool1d(_v_emb_it, 1).reshape(bs,nc) @ self.backbone_proj

        processed_results = []
        for idx, batch_data in enumerate(batched_inputs):
            caption_ids = []
            t_emb_its = []
            processed_results.append({})
            for caption in batch_data['captions']:
                lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(caption)
                t_emb_it = lang_results['class_emb']
                caption_ids.append(batch_data['image_id'])
                t_emb_its.append(t_emb_it)

            t_emb_it = torch.cat(t_emb_its, dim=0)

            image_embeds = [v_emb_it[idx].unsqueeze(0)]
            if self.task_switch['retrieval'] and self.retrieval_emsemble:
                image_embeds += [_v_emb_it[idx].unsqueeze(0)]
            caption_results = {
                    'image_embeds': image_embeds,
                    'text_embeds': t_emb_it,
                    'caption_ids': caption_ids,
                    'image_ids': batch_data['image_id'],
                }
            processed_results[-1]["caption"] = caption_results            

        del features
        return processed_results

    def evaluate_captioning(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]

        if not hasattr(self, 'start_token'):
            self.start_token = torch.tensor([[49406]*77], device=self.device)
        
        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)

        captioning_mask = None
        if 'captioning_mask' in batched_inputs[-1]:
            captioning_mask = torch.cat([x['captioning_mask'] for x in batched_inputs])

        outputs = self.sem_seg_head(features, target_queries=queries_grounding, task='captioning_infer', extra={'start_token': self.start_token, 'captioning_mask': captioning_mask})

        processed_results = []
        for idx, batch_data in enumerate(batched_inputs):
            processed_results.append({})
            processed_results[-1]["captioning_token"] = outputs['pred_captionings'][idx]
            processed_results[-1]["captioning_text"] = outputs['pred_texts'][idx].split('.')[0]
            processed_results[-1]["image_id"] = batched_inputs[idx]['image_id']
            
        return processed_results

    def evaluate_classification(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]
        
        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=queries_grounding)

        processed_results = []
        for idx, batch_data in enumerate(batched_inputs):
            processed_results.append({})
            processed_results[-1]["pred_class"] = outputs['pred_logits'][idx,-1]
        return processed_results

    def evaluate_grounding_baseline(self, batched_inputs, mode):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]
        
        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=queries_grounding)

        mask_pred_results = outputs["pred_masks"]
        caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]

        # upsample masks
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(images.tensor.shape[-2], images.tensor.shape[-1]),
            mode="bicubic",
            align_corners=False,
            antialias=True
        )

        processed_results = []
        for mask_pred_result, caption_pred_result, input_per_image, image_size in zip(
            mask_pred_results, caption_pred_results, batched_inputs, images.image_sizes
        ):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            processed_results.append({})

            mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
                mask_pred_result, image_size, height, width
            )[:-1]

            texts_all = input_per_image['groundings']['texts']
            grd_masks = []
            for texts in texts_all:
                if mode == 'grounding_refcoco':
                    self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=False, is_eval=True)
                elif mode == 'grounding_phrasecut':
                    self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=True, is_eval=False)
                t_emb = getattr(self.sem_seg_head.predictor.lang_encoder, "{}_text_embeddings".format('grounding')).t()
                v_emb = caption_pred_result[:-1]
                v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
                vt_sim = v_emb @ t_emb
                max_id = vt_sim.max(0)[1][0]
                grd_masks += [mask_pred_result[max_id]]
            processed_results[-1]['grounding_mask'] = torch.stack(grd_masks)

        return processed_results

    def evaluate_grounding(self, batched_inputs, mode):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        extra = {}
        # mask_pred_results = []
        # for idx, batch_per_image in enumerate(batched_inputs):
        #     grd_texts = batch_per_image['groundings']['texts']
        #     grd_masks = []
        #     for anno_text in grd_texts:
        #         gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False)
        #         token_emb = gtext['token_emb']
        #         tokens = gtext['tokens']
            
        #         grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]]
        #         extra['grounding_tokens'] = grd_emb[:,None]

        #         assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
        #         features = self.backbone(images.tensor)
        #         outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
                
        #         pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
        #         v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
        #         t_emb = grd_emb[-1:]

        #         t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
        #         v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)            

        #         temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
        #         out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
                
        #         matched_id = out_prob.max(0)[1]
        #         grd_masks += [pred_gmasks[matched_id,:,:]]
        #     mask_pred_results += [torch.cat(grd_masks)]

        # comment for multi object inference.
        mask_pred_results = []
        for idx, batch_per_image in enumerate(batched_inputs):
            grd_texts = batch_per_image['groundings']['texts']
            grd_texts = [x[0] for x in grd_texts]

            gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
            token_emb = gtext['token_emb']
            tokens = gtext['tokens']
            query_emb = token_emb[tokens['attention_mask'].bool()]
            extra['grounding_tokens'] = query_emb[:,None]

            features = self.backbone(images.tensor)
            outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')

            pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
            v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
            t_emb = gtext['class_emb']

            t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
            v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)            

            temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
            out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
            
            matched_id = out_prob.max(0)[1]
            mask_pred_results += [pred_gmasks[matched_id,:,:]]

        for i in range(len(mask_pred_results)):
            # upsample masks
            mask_pred_results[i] = F.interpolate(
                mask_pred_results[i][None,],
                size=(images.tensor.shape[-2], images.tensor.shape[-1]),
                mode="bicubic",
                align_corners=False,
                antialias=True
            )[0]

        processed_results = []
        for mask_pred_result, input_per_image, image_size in zip(
            mask_pred_results, batched_inputs, images.image_sizes
        ):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            processed_results.append({})

            mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
                mask_pred_result, image_size, height, width
            )
            processed_results[-1]['grounding_mask'] = mask_pred_result

            # compute bbox
            # bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes()
            # bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
            # processed_results[-1]['grounding_box'] = bbox

        return processed_results

    def prepare_vlp_targets(self, batched_inputs, device):
        input_ids = []
        attention_mask = []
        for cnt, x in enumerate(batched_inputs):
            captions = x['captions']
            randid = random.randint(0, len(captions)-1)
            input_ids += x['tokens']['input_ids'][randid:randid+1]
            attention_mask += x['tokens']['attention_mask'][randid:randid+1]

        input_ids = torch.stack(input_ids)
        attention_mask = torch.stack(attention_mask)
        tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
        lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(tokens, token=True)

        target_vlp = []
        for cnt, x in enumerate(batched_inputs):
            target_dict = {}
            target_dict["caption_tokens"] = lang_results['token_emb'][cnt:cnt+1]
            target_dict["caption_proj"] = lang_results['class_emb'][cnt:cnt+1]
            target_dict["caption_tokenids"] = lang_results['tokens']['input_ids'][cnt:cnt+1]
            target_dict["caption_mask"] = lang_results['tokens']['attention_mask'][cnt:cnt+1]            
            target_vlp.append(target_dict)
        return target_vlp
    
    def prepare_targets(self, batched_inputs, images):
        h_pad, w_pad = images.tensor.shape[-2:]
        new_targets = []
        for idx, batch_per_image in enumerate(batched_inputs):
            targets_per_image = batch_per_image["instances"].to(self.device)

            # pad gt
            gt_masks = targets_per_image.gt_masks
            padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
            padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks

            gt_boxes = targets_per_image.gt_boxes.tensor
            ratio = torch.tensor([w_pad,h_pad,w_pad,h_pad]).to(gt_boxes.device)[None,:]
            gt_boxes = gt_boxes / ratio
            xc,yc,w,h = (gt_boxes[:,0] + gt_boxes[:,2])/2, (gt_boxes[:,1] + gt_boxes[:,3])/2, gt_boxes[:,2] - gt_boxes[:,0], gt_boxes[:,3] - gt_boxes[:,1]
            gt_boxes = torch.stack([xc,yc,w,h]).permute(1,0)

            target_dict = {
                    "labels": targets_per_image.gt_classes,
                    "is_things": targets_per_image.is_things,
                    "masks": padded_masks,
                    "boxes": gt_boxes
                    }

            if self.task_switch['caption']:
                caption = batch_per_image["captions"]
                caption_noun = batch_per_image["captions_noun"]
                rand_index = random.randint(0, len(caption)-1)

                text = caption[rand_index]
                nouns = caption_noun[rand_index]
                noun_captions = [prompt_engineering(noun, topk=10000, suffix='.') for noun in nouns] + [text]
                
                self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(noun_captions, is_eval=False, name='caption_noun', prompt=False)
                ctext = getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('caption_noun'))
                target_dict["captions"] = ctext
                
                target_dict["captions_hash"] = [(hash(st.stem(txt)) % 10**16) for txt in (nouns + [text])]
                target_dict["labels_hash"] = [(hash(st.stem(COCO_PANOPTIC_CLASSES[label_id].replace('-other','').replace('-merged','').replace('-stuff',''))) % 10**16) for label_id in target_dict['labels']]
                
            if self.task_switch['grounding']:
                grd_masks = batch_per_image['groundings']['masks']
                grd_texts = batch_per_image['groundings']['texts']
                grd_hash = batch_per_image['groundings']['hash']
                grd_task = batch_per_image['groundings']['mode']
                
                if len(grd_masks) == 0:
                    padded_masks = None
                else:
                    padded_masks = torch.zeros((grd_masks.shape[0], h_pad, w_pad), dtype=grd_masks.dtype, device=grd_masks.device)
                    padded_masks[:, : grd_masks.shape[1], : grd_masks.shape[2]] = grd_masks

                gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
                token_emb = gtext['token_emb']
                tokens = gtext['tokens']
                
                unique_hash_id = np.unique(grd_hash, return_index=True)[1]
                selected_mask = np.zeros(len(grd_hash)).astype(np.bool)
                selected_mask[unique_hash_id] = True

                selected_token_emb = token_emb[selected_mask]
                selected_attn_mask = tokens['attention_mask'][selected_mask]
                query_emb = selected_token_emb[selected_attn_mask.bool()]
                
                class_idx = tokens['attention_mask'].sum(dim=-1) - 1
                class_idx = torch.stack((torch.arange(len(class_idx), device=class_idx.device), class_idx)).tolist()
                class_emb = token_emb[class_idx]
                
                target_dict['grounding_masks'] = padded_masks
                target_dict['grounding_query_embs'] = query_emb
                target_dict['grounding_class_embs'] = class_emb
                target_dict['grounding_hash'] = grd_hash
                target_dict['grounding_task'] = grd_task

            new_targets.append(target_dict)
        return new_targets

    def semantic_inference(self, mask_cls, mask_pred, keep_sem_bgd=False):
        if keep_sem_bgd:
            mask_cls = F.softmax(mask_cls, dim=-1)
        else:
            mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
        mask_pred = mask_pred.sigmoid()
        semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
        return semseg

    def panoptic_inference(self, mask_cls, mask_pred):
        scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
        mask_pred = mask_pred.sigmoid()

        keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
        cur_scores = scores[keep]
        cur_classes = labels[keep]
        cur_masks = mask_pred[keep]
        cur_mask_cls = mask_cls[keep]
        cur_mask_cls = cur_mask_cls[:, :-1]
        cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks

        h, w = cur_masks.shape[-2:]
        panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
        segments_info = []

        current_segment_id = 0

        if cur_masks.shape[0] == 0:
            # We didn't detect any mask :(
            return panoptic_seg, segments_info
        else:
            # take argmax
            cur_mask_ids = cur_prob_masks.argmax(0)
            stuff_memory_list = {}
            thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
            for k in range(cur_classes.shape[0]):
                pred_class = cur_classes[k].item()
                isthing = pred_class in thing_dataset_id_to_contiguous_id.values()
                mask_area = (cur_mask_ids == k).sum().item()
                original_area = (cur_masks[k] >= 0.5).sum().item()
                mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)

                if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
                    if mask_area / original_area < self.overlap_threshold:
                        continue

                    # merge stuff regions
                    if not isthing:
                        if int(pred_class) in stuff_memory_list.keys():
                            panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
                            continue
                        else:
                            stuff_memory_list[int(pred_class)] = current_segment_id + 1

                    current_segment_id += 1
                    panoptic_seg[mask] = current_segment_id

                    segments_info.append(
                        {
                            "id": current_segment_id,
                            "isthing": bool(isthing),
                            "category_id": int(pred_class),
                        }
                    )
            return panoptic_seg, segments_info

    def instance_inference(self, mask_cls, mask_pred, box_pred):
        # mask_pred is already processed to have the same shape as original input
        image_size = mask_pred.shape[-2:]

        # [Q, K]
        scores = F.softmax(mask_cls, dim=-1)[:, :-1]
        labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
        # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
        scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)

        labels_per_image = labels[topk_indices]
        topk_indices = (topk_indices // self.sem_seg_head.num_classes)
        # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
        mask_pred = mask_pred[topk_indices]
        if box_pred is not None:
            box_pred = box_pred[topk_indices]

        # if this is panoptic segmentation, we only keep the "thing" classes
        if self.panoptic_on:
            thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
            keep = torch.zeros_like(scores_per_image).bool()
            for i, lab in enumerate(labels_per_image):
                keep[i] = lab in thing_dataset_id_to_contiguous_id.values()

            scores_per_image = scores_per_image[keep]
            labels_per_image = labels_per_image[keep]
            mask_pred = mask_pred[keep]

            if box_pred is not None:
                box_pred = box_pred[keep]

        result = Instances(image_size)
        # mask (before sigmoid)
        result.pred_masks = (mask_pred > 0).float()
        # result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
        # Uncomment the following to get boxes from masks (this is slow)

        if box_pred is not None:
            result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
        else:
            result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))

        # calculate average mask prob
        mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
        result.scores = scores_per_image * mask_scores_per_image
        result.pred_classes = labels_per_image

        return result



@register_model
def get_xdecoder_model(cfg, **kwargs):
    return GeneralizedXdecoder(cfg)