Spaces:
Sleeping
Sleeping
File size: 60,189 Bytes
202eff6 6ba63c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------
# SEEM -- Segment Everything Everywhere All at Once
# Licensed under The Apache License 2.0 [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------
import random
from typing import Tuple
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from kornia.contrib import distance_transform
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.data import MetadataCatalog
from .build import register_model
from ..utils import configurable, get_class_names, get_iou, Spatial_ImageList
from ..vision.backbone import build_backbone, Backbone
from ..body import build_xdecoder_head
from ..modules import sem_seg_postprocess, SetCriterion, HungarianMatcher, bbox_postprocess
from ..language import build_language_encoder
from ..language.loss import vl_similarity
from utilities.prompt_engineering import prompt_engineering
from utilities.constants import COCO_PANOPTIC_CLASSES, BIOMED_CLASSES
class GeneralizedSEEM(nn.Module):
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion: nn.Module,
losses: dict,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
metadata,
task_switch: dict,
phrase_prob: float,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
train_dataset_name: str,
interactive_mode: str,
interactive_iter: str,
dilation_kernel: torch.Tensor,
train_max_iter: int,
binary_classes: bool,
standard_text_for_eval: bool,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.criterion = criterion
self.losses = losses
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
# caption argument
self.task_switch = task_switch
self.phrase_prob = phrase_prob
self.train_max_iter = train_max_iter
self.test_topk_per_image = test_topk_per_image
self.train_class_names = get_class_names(train_dataset_name)
if binary_classes:
self.train_class_names = ['target', 'background']
self.interactive_mode = interactive_mode
self.interactive_iter = interactive_iter
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
self.register_buffer("dilation_kernel", dilation_kernel)
self.standard_text_for_eval = standard_text_for_eval
@classmethod
def from_config(cls, cfg):
enc_cfg = cfg['MODEL']['ENCODER']
dec_cfg = cfg['MODEL']['DECODER']
# Loss parameters:
deep_supervision = dec_cfg['DEEP_SUPERVISION']
no_object_weight = dec_cfg['NO_OBJECT_WEIGHT']
# loss weights
loss_weights = {'mask': {'ce': dec_cfg['CLASS_WEIGHT'], 'dice': dec_cfg['DICE_WEIGHT'], 'bce': dec_cfg['MASK_WEIGHT']},
'bbox': {'l1': dec_cfg['BBOX_WEIGHT'], 'giou': dec_cfg['GIOU_WEIGHT']},
'spatial': {'ce': dec_cfg['SCLASS_WEIGHT'], 'dice': dec_cfg['SDICE_WEIGHT'], 'bce': dec_cfg['SMASK_WEIGHT']},
'grounding': {'ce': dec_cfg['GCLASS_WEIGHT'], 'dice': dec_cfg['GDICE_WEIGHT'], 'bce': dec_cfg['GMASK_WEIGHT']},
'openimage': {'ce': dec_cfg['OCLASS_WEIGHT'], 'dice': dec_cfg['ODICE_WEIGHT'], 'bce': dec_cfg['OMASK_WEIGHT']}}
openimage_switch = {'grounding': dec_cfg['OPENIMAGE']['GROUNDING'].get('ENABLED', False),
'mask': dec_cfg['OPENIMAGE'].get('ENABLED', False)}
task_switch = {'bbox': dec_cfg.get('DETECTION', False),
'mask': dec_cfg['MASK'].get('ENABLED', True),
'spatial': dec_cfg['SPATIAL'].get('ENABLED', False),
'grounding': dec_cfg['GROUNDING'].get('ENABLED', False),
'openimage': openimage_switch}
top_x_layers = {'mask': dec_cfg.get('TOP_MASK_LAYERS', 10),
'grounding': dec_cfg.get('TOP_GROUNDING_LAYERS', 10),
'openimage': dec_cfg.get('TOP_OPENIMAGE_LAYERS', 10),
'spatial': dec_cfg.get('TOP_SPATIAL_LAYERS', 10)}
spatial_cost = {"class_weight": dec_cfg['COST_SPATIAL']['CLASS_WEIGHT'],
"mask_weight": dec_cfg['COST_SPATIAL']['MASK_WEIGHT'],
"dice_weight": dec_cfg['COST_SPATIAL']['DICE_WEIGHT']}
extra = {'task_switch': task_switch}
backbone = build_backbone(cfg)
lang_encoder = build_language_encoder(cfg)
sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra=extra)
# building criterion
matcher = HungarianMatcher(
cost_class=loss_weights['mask']['ce'],
cost_mask=loss_weights['mask']['bce'],
cost_dice=loss_weights['mask']['dice'],
num_points=dec_cfg['TRAIN_NUM_POINTS'],
spatial_cost=spatial_cost,
)
# init weight dict and criterion loss functions.
losses = {'seg': [], 'openimage': []}
if task_switch['mask']:
losses['seg'] += ["labels", "masks"]
if task_switch['spatial']:
losses['seg'] += ["spatials"]
if task_switch['grounding']:
losses['seg'] += ["groundings"]
if task_switch['openimage']:
losses['openimage'] += ["labels_openimage", "masks"]
if task_switch['openimage']['grounding']:
losses['openimage'] += ["groundings"]
weight_dict = {}
for key, turn_on in task_switch.items():
if turn_on:
if isinstance(loss_weights[key], dict):
# HACK it should support bbox in the future
for key_, weight in loss_weights[key].items():
weight_dict["loss_{}_{}_0".format(key, key_)] = weight # NOTE: hard code for segmentation that has multiple loss
else:
weight_dict["loss_{}_0".format(key)] = loss_weights[key]
# generate full weight dict and remove not computed layers.
if deep_supervision:
dec_layers = dec_cfg['DEC_LAYERS']
aux_weight_dict = {}
for i in range(dec_layers - 1):
for k, v in weight_dict.items():
if (i+1) > (top_x_layers[k.split('_')[1]] - 1):
continue
aux_weight_dict.update({k.replace('_0', f"_{i+1}"): v})
weight_dict.update(aux_weight_dict)
grd_weight = {'text': dec_cfg['GROUNDING']['TEXT_WEIGHT'], 'class': dec_cfg['GROUNDING']['CLASS_WEIGHT']}
# generate critenrion for loss function.
criterion = SetCriterion(
sem_seg_head.num_classes,
matcher=matcher,
weight_dict=weight_dict,
top_x_layers=top_x_layers,
eos_coef=no_object_weight,
losses=[],
num_points=dec_cfg['TRAIN_NUM_POINTS'],
oversample_ratio=dec_cfg['OVERSAMPLE_RATIO'],
importance_sample_ratio=dec_cfg['IMPORTANCE_SAMPLE_RATIO'],
grounding_weight=grd_weight,
)
# extra logistic
train_dataset_name = cfg['DATASETS']['TRAIN'][0] # HACK for only one training set.
train_max_iter = dec_cfg['SPATIAL'].get('MAX_ITER', 3)
phrase_prob = dec_cfg['CAPTION'].get('PHRASE_PROB', 0.5)
interactive_mode = cfg['STROKE_SAMPLER']['EVAL']['MODE']
interactive_iter = cfg['STROKE_SAMPLER']['EVAL']['MAX_ITER']
dilation = 3
dilation_kernel = torch.ones((1, 1, dilation, dilation), device=torch.cuda.current_device())
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"criterion": criterion,
"losses": losses,
"num_queries": dec_cfg['NUM_OBJECT_QUERIES'],
"object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'],
"overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'],
"metadata": MetadataCatalog.get(cfg['DATASETS']['TRAIN'][0]),
"size_divisibility": dec_cfg['SIZE_DIVISIBILITY'],
"sem_seg_postprocess_before_inference": (
dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE']
or dec_cfg['TEST']['PANOPTIC_ON']
or dec_cfg['TEST']['INSTANCE_ON']
),
"pixel_mean": cfg['INPUT']['PIXEL_MEAN'],
"pixel_std": cfg['INPUT']['PIXEL_STD'],
"task_switch": task_switch,
"phrase_prob": phrase_prob,
# inference
"semantic_on": dec_cfg['TEST']['SEMANTIC_ON'],
"instance_on": dec_cfg['TEST']['INSTANCE_ON'],
"panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'],
"test_topk_per_image": cfg['TEST']['DETECTIONS_PER_IMAGE'],
"train_dataset_name": train_dataset_name,
"interactive_mode": interactive_mode,
"interactive_iter": interactive_iter,
"dilation_kernel": dilation_kernel,
"train_max_iter": train_max_iter,
"binary_classes": enc_cfg['BINARY_CLASSES'],
"standard_text_for_eval": cfg['STANDARD_TEXT_FOR_EVAL'],
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs, mode='default'):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
if self.training:
losses = {}
if self.task_switch['mask'] or self.task_switch['grounding'] or self.task_switch['spatial']:
losses_seg = self.forward_seg(batched_inputs)
losses.update(losses_seg)
if self.task_switch['openimage'] and self.task_switch['openimage']['mask']:
losses_openimage = self.forward_openimage(batched_inputs['openimage'])
losses_openimage = {key.replace('mask', 'openimage'):value for key, value in losses_openimage.items()}
losses_openimage = {key.replace('grounding', 'grounding_openimage'):value for key, value in losses_openimage.items()}
losses.update(losses_openimage)
for k in list(losses.keys()):
if k in self.criterion.weight_dict:
losses[k] *= self.criterion.weight_dict[k]
else: # remove this loss if not specified in `weight_dict`
losses.pop(k)
return losses
else:
if mode == 'interactive':
return self.evaluate_interactive(batched_inputs)
elif mode == 'interactive_grounding':
return self.evaluate_interactive_grounding(batched_inputs)
elif mode == 'grounding_spatial':
return self.evaluate_grounding_sptial(batched_inputs, mode)
elif mode in ['grounding_phrasecut', 'grounding_refcoco']:
return self.evaluate_grounding(batched_inputs, mode)
else:
return self.evaluate(batched_inputs)
def forward_seg(self, batched_inputs):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(self.train_class_names, is_eval=False)
extra = {}
# mask classification target
if "instances" in batched_inputs[0]:
# input bounding box is checked to be correct.
targets = self.prepare_targets(batched_inputs, images)
if self.task_switch['grounding']:
grounding_tokens = [x['grounding_query_embs'] for x in targets] # need to pad for more than one grounding token
grounding_tokens = nn.utils.rnn.pad_sequence(grounding_tokens, padding_value=-1)
non_zero_query_mask = (grounding_tokens.sum(dim=-1) == -grounding_tokens.shape[-1])
grounding_tokens[non_zero_query_mask] = 0
extra['grounding_tokens'] = grounding_tokens
extra['grounding_nonzero_mask'] = non_zero_query_mask.t()
if self.task_switch['spatial']:
pos_masks = [x['spatial_query']['rand_shape'].to(self.device) for x in batched_inputs]
neg_masks = [(x['spatial_query']['rand_shape'].to(self.device) & False) for x in batched_inputs]
fp_masks = nn.utils.rnn.pad_sequence([(x['spatial_query']['rand_shape'].to(self.device) & False) for x in batched_inputs], padding_value=False, batch_first=True)
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks, 'false_positive_mask': fp_masks})
features = self.backbone(images.tensor)
mask_features, _, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features)
# forward spatial only without gradient
if self.task_switch['spatial']:
with torch.no_grad():
# generate random integeter between [0,3]
rand_iter_num = random.randint(0, self.train_max_iter)
for i in range(rand_iter_num):
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, extra=extra, task='spatial')
extra.update(outputs)
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs))
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, extra=extra, task='seg')
extra = {'lang_logit': self.sem_seg_head.predictor.lang_encoder.logit_scale,
'class_embeddings': getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('default')),
'false_positive_mask': extra['false_positive_mask']}
# bipartite matching-based loss
self.criterion.losses = self.losses['seg'] # seg criterion losses
if self.task_switch['mask']:
losses = self.criterion(outputs, targets, extra)
else:
losses = self.criterion.forward_vlp(outputs, targets, extra)
del outputs
return losses
def evaluate(self, batched_inputs):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, target_queries=queries_grounding)
mask_cls_results = outputs["pred_logits"]
mask_pred_results = outputs["pred_masks"]
box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))]
# upsample masks
mask_pred_results = F.interpolate(
mask_pred_results,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
input_size = mask_pred_results.shape[-2:]
del outputs
processed_results = []
for mask_cls_result, mask_pred_result, box_pred_result, input_per_image, image_size in zip(
mask_cls_results, mask_pred_results, box_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
if self.sem_seg_postprocess_before_inference:
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
mask_cls_result = mask_cls_result.to(mask_pred_result)
# semantic segmentation inference
if self.semantic_on:
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference:
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
processed_results[-1]["sem_seg"] = r
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
# instance segmentation inference
if self.instance_on:
if self.task_switch['bbox']:
box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width)
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result)
processed_results[-1]["instances"] = instance_r
return processed_results
def evaluate_interactive(self, batched_inputs):
assert self.task_switch['spatial']
assert 'spatial_query' in batched_inputs[0]
assert len(batched_inputs) == 1, "only support batch size equal to 1"
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
extra = {}
features = self.backbone(images.tensor)
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features)
image_sizes = [x["image"].shape[-2:] for x in batched_inputs]
all_batch_shape_iou = []
pred_smask_pointer = None
prev_smask_pointer = None
pred_smask_all = None
# visualization code
# v_pred_mask = []
# v_pos_mask = []
# v_neg_mask = []
# v_gt_mask = batched_inputs[0]['spatial_query']['gt_masks'][0]
query_index = self.sem_seg_head.predictor.query_index
if self.interactive_mode in ['best', 'best_random']:
pos_masks = [x['spatial_query']['rand_shape'].to(self.device)[:,0] for x in batched_inputs]
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0)
neg_masks = [(x['spatial_query']['rand_shape'].to(self.device) & False)[:,0] for x in batched_inputs]
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0)
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks})
elif self.interactive_mode == 'random':
assert False, "interactive mode not correctly implemented"
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==1).unbind(0)
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==-1).unbind(0)
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor
extra.update({'spatial_query_pos_mask': pos_masks[:,0:1].unbind(), 'spatial_query_neg_mask': neg_masks[:,0:1].unbind()})
else:
assert False, "invalid interactive mode"
for i in range(self.interactive_iter):
# v_pos_mask += [extra['spatial_query_pos_mask'][0][0][:image_sizes[0][0],:image_sizes[0][1]].float().cpu().numpy()]
# v_neg_mask += [extra['spatial_query_neg_mask'][0][0][:image_sizes[0][0],:image_sizes[0][1]].float().cpu().numpy()]
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial')
extra.update(outputs)
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bilinear')
# v_pred_mask += [(pred_smask[0,0][:image_sizes[0][0],:image_sizes[0][1]].sigmoid() > 0.5).float().cpu().numpy()]
s = image_sizes[0]
b = batched_inputs[0]
pred_smask_all = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bilinear')[0].sigmoid() > 0.5
gt_smask = b['gt_masks_orisize']
ious = get_iou(gt_smask, pred_smask_all)
all_batch_shape_iou += [ious]
if (ious > 0.9).sum() == len(ious):
all_batch_shape_iou += [ious for j in range(self.interactive_iter-i-1)]
break
if self.interactive_mode in ['best', 'best_random']:
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs, mode=self.interactive_mode))
elif self.interactive_mode == 'random':
extra.update({'spatial_query_pos_mask': pos_masks[:,i+1:i+2].unbind(), 'spatial_query_neg_mask': neg_masks[:,i+1:i+2].unbind()})
else:
assert False, "invalid interactive mode"
all_batch_shape_iou = torch.stack(all_batch_shape_iou)
processed_results = [{"mask_iou": all_batch_shape_iou[:,i]} for i in range(len(all_batch_shape_iou[0]))]
return processed_results
def evaluate_interactive_single(self, batched_inputs, extra={}):
assert self.task_switch['spatial']
assert 'spatial_query' in batched_inputs[0]
assert len(batched_inputs) == 1, "only support batch size equal to 1"
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
features = self.backbone(images.tensor)
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features)
image_sizes = [x["image"].shape[-2:] for x in batched_inputs]
nm = len(batched_inputs[0]['spatial_query']['rand_shape'])
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features]
mask_features = mask_features.repeat(nm,1,1,1)
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial')
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bicubic')
s = image_sizes[0]
b = batched_inputs[0]
pred_smask_ori = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bicubic')[:,0].sigmoid() > 0.5
pred_smask_batch = pred_smask[:,:,:s[0],:s[1]].sigmoid() > 0.5
ious = []
if 'gt_masks_orisize' in b:
gt_smask = b['gt_masks_orisize'].to(pred_smask_ori.device)
ious = get_iou(gt_smask, pred_smask_ori)
processed_results = [{"mask_iou": ious, 'pred_mask_ori': pred_smask_ori, 'pred_mask_batch': pred_smask_batch}]
return processed_results
def evaluate_interactive_grounding(self, batched_inputs):
assert self.task_switch['spatial']
assert 'spatial_query' in batched_inputs[0]
assert len(batched_inputs) == 1, "only support batch size equal to 1"
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
extra = {}
features = self.backbone(images.tensor)
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features)
image_sizes = [x["image"].shape[-2:] for x in batched_inputs]
nm = len(batched_inputs[0]['spatial_query']['rand_shape'])
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features]
mask_features = mask_features.repeat(nm,1,1,1)
all_batch_shape_iou = []
pred_smask_pointer = None
prev_smask_pointer = None
pred_smask_all = None
# visualization code
# v_pred_mask = []
# v_pos_mask = []
# v_neg_mask = []
# v_gt_mask = batched_inputs[0]['spatial_query']['gt_masks'][0]
query_index = self.sem_seg_head.predictor.query_index
if self.interactive_mode in ['best', 'best_random']:
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0)
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0)
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0)
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0)
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks})
elif self.interactive_mode == 'random':
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==1).unbind(0)
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==-1).unbind(0)
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor
extra.update({'spatial_query_pos_mask': pos_masks[:,0:1].unbind(), 'spatial_query_neg_mask': neg_masks[:,0:1].unbind()})
else:
assert False, "invalid interactive mode"
grd_texts = batched_inputs[0]['classes']
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
token_emb = gtext['token_emb']
tokens = gtext['tokens']
query_emb = nn.utils.rnn.pad_sequence([_token_emb[_tokens.bool()] for _token_emb, _tokens in zip(token_emb, tokens['attention_mask'])], padding_value=-1)
non_zero_query_mask = (query_emb.sum(dim=-1) < 0)
extra['grounding_tokens'] = query_emb
extra['grounding_nonzero_mask'] = non_zero_query_mask.t()
for i in range(self.interactive_iter):
# v_pos_mask += [extra['spatial_query_pos_mask'][0][0][:image_sizes[0][0],:image_sizes[0][1]].float().cpu().numpy()]
# v_neg_mask += [extra['spatial_query_neg_mask'][0][0][:image_sizes[0][0],:image_sizes[0][1]].float().cpu().numpy()]
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial')
extra.update(outputs)
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bilinear')
# v_pred_mask += [(pred_smask[0,0][:image_sizes[0][0],:image_sizes[0][1]].sigmoid() > 0.5).float().cpu().numpy()]
s = image_sizes[0]
b = batched_inputs[0]
pred_smask_all = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bilinear')[:,0].sigmoid() > 0.5
gt_smask = b['gt_masks_orisize']
ious = get_iou(gt_smask, pred_smask_all)
all_batch_shape_iou += [ious]
if (ious > 0.9).sum() == len(ious):
all_batch_shape_iou += [ious for j in range(self.interactive_iter-i-1)]
break
if self.interactive_mode in ['best', 'best_random']:
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs, mode=self.interactive_mode))
elif self.interactive_mode == 'random':
extra.update({'spatial_query_pos_mask': pos_masks[:,i+1:i+2].unbind(), 'spatial_query_neg_mask': neg_masks[:,i+1:i+2].unbind()})
else:
assert False, "invalid interactive mode"
all_batch_shape_iou = torch.stack(all_batch_shape_iou)
processed_results = [{"mask_iou": all_batch_shape_iou[:,i]} for i in range(len(all_batch_shape_iou[0]))]
# visualization
# VL.step()
# import cv2
# v_masks = []
# v_pos_masks = []
# v_neg_masks = []
# txt = []
# img = batched_inputs[0]['image'].permute(1,2,0).cpu().numpy()
# mask_img = VL.overlay_single_mask_to_image(img[:,:,::-1], v_gt_mask.cpu().float().numpy())
# acc_pos_mask = np.zeros(v_pos_mask[0].shape)
# acc_neg_mask = np.zeros(v_neg_mask[0].shape)
# for x,y,z,iou in zip(v_pos_mask, v_neg_mask, v_pred_mask, all_batch_shape_iou):
# # dilate x,y
# x = cv2.dilate(x, np.ones((5,5), np.uint8), iterations=3)
# y = cv2.dilate(y, np.ones((5,5), np.uint8), iterations=3)
# acc_pos_mask += x
# acc_neg_mask += y
# v_masks += [z]
# v_pos_masks += [acc_pos_mask.clip(0,1)]
# v_neg_masks += [acc_neg_mask.clip(0,1)]
# txt += ["pred_{}".format(str(iou[0].item())[0:5])]
# VL.add_image(img[:,:,::-1])
# VL.insert(mask_img, "gt_mask")
# VL.overlay_obj_mask_to_image_withposneg(img[:,:,::-1], v_masks, v_pos_masks, v_neg_masks, txt, max_len=20)
return processed_results
def evaluate_referring_image(self, batched_inputs, extra={}):
assert self.task_switch['spatial']
assert len(batched_inputs) == 1, "only support batch size equal to 1"
assert self.interactive_mode == 'best'
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
features = self.backbone(images.tensor)
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features)
if 'spatial_query' in batched_inputs[0]:
image_sizes = [x["image"].shape[-2:] for x in batched_inputs]
nm = len(batched_inputs[0]['spatial_query']['rand_shape'])
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features]
mask_features = mask_features.repeat(nm,1,1,1)
query_index = self.sem_seg_head.predictor.query_index
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0)
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0)
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0)
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0)
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks})
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='refimg')
return outputs, images.tensor.shape
def evaluate_grounding(self, batched_inputs, mode):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
extra = {}
# mask_pred_results = []
# for idx, batch_per_image in enumerate(batched_inputs):
# grd_texts = batch_per_image['groundings']['texts']
# grd_masks = []
# for anno_text in grd_texts:
# gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False)
# token_emb = gtext['token_emb']
# tokens = gtext['tokens']
# grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]]
# extra['grounding_tokens'] = grd_emb[:,None]
# assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
# features = self.backbone(images.tensor)
# outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
# pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
# v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
# t_emb = grd_emb[-1:]
# t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
# v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
# temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
# out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
# matched_id = out_prob.max(0)[1]
# grd_masks += [pred_gmasks[matched_id,:,:]]
# mask_pred_results += [torch.cat(grd_masks)]
# comment for multi object inference.
mask_pred_results = []
for idx, batch_per_image in enumerate(batched_inputs):
grd_texts = batch_per_image['groundings']['texts']
if self.standard_text_for_eval:
standard_texts = []
for grd in batch_per_image['grounding_info']:
mask_file = grd['mask_file'].split('.')[0].split('/')[-1]
target = mask_file.split('_')[-1].replace('+', ' ')
site = mask_file.split('_')[-2].replace('+', ' ')
modality = mask_file.split('_')[-3].replace('+', ' ')
standard_texts.append(f'{target} in {site} {modality}')
grd_texts = standard_texts
batch_per_image['groundings']['texts'] = standard_texts
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
token_emb = gtext['token_emb']
tokens = gtext['tokens']
query_emb = token_emb[tokens['attention_mask'].bool()]
non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device)
extra['grounding_tokens'] = query_emb[:,None]
extra['grounding_nonzero_mask'] = non_zero_query_mask.t()
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
pred_gmasks = outputs['pred_gmasks'][idx]
v_emb = outputs['pred_gtexts'][idx]
t_emb = gtext['class_emb']
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
matched_id = out_prob.max(0)[1]
mask_pred_results += [pred_gmasks[matched_id,:,:]]
for i in range(len(mask_pred_results)):
# upsample masks
mask_pred_results[i] = F.interpolate(
mask_pred_results[i][None,],
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)[0]
processed_results = []
for mask_pred_result, input_per_image, image_size in zip(
mask_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
processed_results[-1]['grounding_mask'] = mask_pred_result
# compute bbox
# bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes()
# bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
# processed_results[-1]['grounding_box'] = bbox
return processed_results
def evaluate_grounding_sptial(self, batched_inputs, mode):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
extra = {}
dilation = 3
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0)
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor
pos_masks = (F.conv2d(pos_masks.float(), self.dilation_kernel, padding=dilation//2) > 0).unbind(0)
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0)
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0)
mask_pred_results = []
for idx, batch_per_image in enumerate(batched_inputs):
grd_texts = batch_per_image['groundings']['texts']
grd_masks = []
for idx2, anno_text in enumerate(grd_texts):
extra.update({'spatial_query_pos_mask': [pos_masks[idx2]], 'spatial_query_neg_mask': [neg_masks[idx2]]})
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False)
token_emb = gtext['token_emb']
tokens = gtext['tokens']
grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]]
non_zero_query_mask = torch.zeros(grd_emb[:,None].shape[:-1], dtype=torch.bool, device=grd_emb.device)
extra['grounding_tokens'] = grd_emb[:,None]
extra['grounding_nonzero_mask'] = non_zero_query_mask.t()
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
pred_gmasks = outputs['pred_gmasks'][idx]
v_emb = outputs['pred_gtexts'][idx]
t_emb = gtext['class_emb']
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
matched_id = out_prob.max(0)[1]
grd_masks += [pred_gmasks[matched_id,:,:]]
# grd_masks += [outputs['prev_mask'][0]]
mask_pred_results += [torch.cat(grd_masks)]
# comment for multi object inference.
# mask_pred_results = []
# for idx, batch_per_image in enumerate(batched_inputs):
# grd_texts = batch_per_image['groundings']['texts']
# grd_texts = [x[0] for x in grd_texts]
# gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
# token_emb = gtext['token_emb']
# tokens = gtext['tokens']
# query_emb = token_emb[tokens['attention_mask'].bool()]
# non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device)
# extra['grounding_tokens'] = query_emb[:,None]
# extra['grounding_nonzero_mask'] = non_zero_query_mask.t()
# features = self.backbone(images.tensor)
# outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
# pred_gmasks = outputs['pred_gmasks'][idx]
# v_emb = outputs['pred_gtexts'][idx]
# t_emb = gtext['class_emb']
# t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
# v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
# temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
# out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
# matched_id = out_prob.max(0)[1]
# mask_pred_results += [pred_gmasks[matched_id,:,:]]
for i in range(len(mask_pred_results)):
# upsample masks
mask_pred_results[i] = F.interpolate(
mask_pred_results[i][None,],
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)[0]
processed_results = []
for mask_pred_result, input_per_image, image_size in zip(
mask_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
processed_results[-1]['grounding_mask'] = mask_pred_result
return processed_results
def prepare_targets(self, batched_inputs, images):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
for idx, batch_per_image in enumerate(batched_inputs):
target_dict = {}
if self.task_switch['mask']:
targets_per_image = batch_per_image['instances'].to(self.device)
# pad gt
gt_masks = targets_per_image.gt_masks.tensor
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
gt_boxes = targets_per_image.gt_boxes.tensor
ratio = torch.tensor([w_pad,h_pad,w_pad,h_pad]).to(gt_boxes.device)[None,:]
gt_boxes = gt_boxes / ratio
xc,yc,w,h = (gt_boxes[:,0] + gt_boxes[:,2])/2, (gt_boxes[:,1] + gt_boxes[:,3])/2, gt_boxes[:,2] - gt_boxes[:,0], gt_boxes[:,3] - gt_boxes[:,1]
gt_boxes = torch.stack([xc,yc,w,h]).permute(1,0)
target_dict.update({
"labels": targets_per_image.gt_classes,
"is_things": targets_per_image.is_things,
"masks": padded_masks,
"boxes": gt_boxes,
})
if self.task_switch['spatial']:
# prepare targets for spatial query
target_dict['gt_spatial_masks'] = batch_per_image['spatial_query']['gt_masks']
if self.task_switch['grounding']:
grd_masks = batch_per_image['groundings']['masks']
grd_texts = batch_per_image['groundings']['texts']
grd_hash = batch_per_image['groundings']['hash']
grd_task = batch_per_image['groundings']['mode']
if len(grd_masks) == 0:
padded_masks = None
else:
padded_masks = torch.zeros((grd_masks.shape[0], h_pad, w_pad), dtype=grd_masks.dtype, device=grd_masks.device)
padded_masks[:, : grd_masks.shape[1], : grd_masks.shape[2]] = grd_masks
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
token_emb = gtext['token_emb']
tokens = gtext['tokens']
unique_hash_id = np.unique(grd_hash, return_index=True)[1]
selected_mask = np.zeros(len(grd_hash)).astype(bool)
selected_mask[unique_hash_id] = True
selected_token_emb = token_emb[selected_mask]
selected_attn_mask = tokens['attention_mask'][selected_mask]
query_emb = selected_token_emb[selected_attn_mask.bool()]
class_idx = tokens['attention_mask'].sum(dim=-1) - 1
class_idx = torch.stack((torch.arange(len(class_idx), device=class_idx.device), class_idx)).tolist()
class_emb = token_emb[class_idx]
target_dict['grounding_masks'] = padded_masks
target_dict['grounding_query_embs'] = query_emb
target_dict['grounding_class_embs'] = class_emb
target_dict['grounding_hash'] = grd_hash
target_dict['grounding_task'] = grd_task
new_targets.append(target_dict)
return new_targets
def prepare_next_spaital_mask(self, outputs, batched_inputs, mode='best'):
gt_masks = [batched_inputs[i]['spatial_query']['gt_masks'] for i in range(len(batched_inputs))]
gt_masks = Spatial_ImageList.from_tensors(gt_masks, self.size_divisibility).tensor
pred_masks = (F.interpolate(outputs['prev_mask'], size=gt_masks.shape[-2:], mode='bilinear', align_corners=False).sigmoid() > 0.5)
prev_masks = nn.utils.rnn.pad_sequence(outputs['spatial_query_pos_mask'], padding_value=False, batch_first=True) | \
nn.utils.rnn.pad_sequence(outputs['spatial_query_neg_mask'], padding_value=False, batch_first=True)
fn = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks) # fn: False Negative, gt:1, pred:0, prev:0
fp = (~gt_masks & pred_masks) & (~prev_masks) # fp: False Positive, gt:0, pred:1, prev:0
# compute iou between gt and pred
iou = (gt_masks & pred_masks).sum(list(range(2,len(fn.shape)))) / ((gt_masks | pred_masks).sum(dim=list(range(2,len(fn.shape)))) + 1e-8)
fn_sum = fn.sum(dim=list(range(2,len(fn.shape))))
fp_sum = fp.sum(dim=list(range(2,len(fp.shape))))
is_postive = fn_sum > fp_sum
select_mask = torch.zeros_like(fn)
select_mask[is_postive] = fn[is_postive]
select_mask[~is_postive] = fp[~is_postive]
# is_postive = torch.ones(len(fn_sum), device=torch.cuda.current_device()).bool()
# conv implementation
bs,ns,h,w = select_mask.shape
mask_dt = (distance_transform((~F.pad(select_mask, pad=(1, 1, 1, 1), mode='constant', value=0)).float())[:,:,1:-1,1:-1]).reshape(bs*ns,-1)
if mode == 'best':
max_xy_idx = torch.stack([torch.arange(bs*ns), mask_dt.max(dim=-1)[1].cpu()]).tolist()
elif mode == 'best_random':
max_xy_idx = torch.stack([torch.arange(bs*ns), torch.cat([(mask_dt[i] > 0).nonzero()[torch.randint(0, len((mask_dt[i] > 0).nonzero()), (1,))][0] for i in range(len(mask_dt))]).cpu()]).tolist()
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool()
next_mask = next_mask.view(bs*ns,-1)
next_mask[max_xy_idx] = True
next_mask = next_mask.reshape((bs*ns,1,h,w)).float()
dilation = 3
next_mask = F.conv2d(next_mask, self.dilation_kernel, padding=dilation//2).reshape(bs,ns,h,w) > 0
# determine whether next mask is zero
keep = (iou < 0.925)
next_mask = next_mask & keep.view(bs,ns,1,1)
pos_mask = []
neg_mask = []
for idx, ip in enumerate(is_postive):
mask_len = len(outputs['spatial_query_pos_mask'][idx])
pos_mask += [outputs['spatial_query_pos_mask'][idx] | (next_mask[idx][:mask_len] & ip[:mask_len,None,None])]
neg_mask += [outputs['spatial_query_neg_mask'][idx] | (next_mask[idx][:mask_len] & (~ip[:mask_len,None,None]))]
if 'false_positive_mask' in outputs:
fp = outputs['false_positive_mask'] | fp
return {'spatial_query_pos_mask': pos_mask, 'spatial_query_neg_mask': neg_mask, 'false_positive_mask': fp}
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
mask_pred = mask_pred.sigmoid()
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
cur_mask_cls = mask_cls[keep]
cur_mask_cls = cur_mask_cls[:, :-1]
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
segments_info = []
current_segment_id = 0
if cur_masks.shape[0] == 0:
# We didn't detect any mask :(
return panoptic_seg, segments_info
else:
# take argmax
cur_mask_ids = cur_prob_masks.argmax(0)
stuff_memory_list = {}
for k in range(cur_classes.shape[0]):
pred_class = cur_classes[k].item()
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
mask_area = (cur_mask_ids == k).sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
if mask_area / original_area < self.overlap_threshold:
continue
# merge stuff regions
if not isthing:
if int(pred_class) in stuff_memory_list.keys():
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
continue
else:
stuff_memory_list[int(pred_class)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(isthing),
"category_id": int(pred_class),
}
)
return panoptic_seg, segments_info
def instance_inference(self, mask_cls, mask_pred, box_pred):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
# [Q, K]
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = (topk_indices // self.sem_seg_head.num_classes)
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
mask_pred = mask_pred[topk_indices]
if box_pred is not None:
box_pred = box_pred[topk_indices]
# if this is panoptic segmentation, we only keep the "thing" classes
if self.panoptic_on:
keep = torch.zeros_like(scores_per_image).bool()
for i, lab in enumerate(labels_per_image):
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
if box_pred is not None:
box_pred = box_pred[keep]
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = (mask_pred > 0).float()
# result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
if box_pred is not None:
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
else:
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# calculate average mask prob
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
return result
def prepare_targets4query(self, targets, images, topk=5):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
new_queries = []
for targets_per_image in targets:
# we randomly sample maximally topk concepts
unique_target_classes = [k for k in set(targets_per_image.gt_classes.tolist())]
selected_target_classes = random.sample(unique_target_classes, min(topk, len(unique_target_classes)))
new_targets_per_image = []
new_queries_per_image = []
for clss in selected_target_classes:
indices = (targets_per_image.gt_classes == clss).nonzero().view(-1)
# pad gt
gt_masks = targets_per_image.gt_masks[indices]
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
# convert class into concept name and then token seq
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings([BIOMED_CLASSES[clss]], name='grounding')
query = getattr(self.sem_seg_head.predictor.lang_encoder, 'grounding_text_embeddings')
new_targets.append(
{
"labels": targets_per_image.gt_classes[indices],
"masks": padded_masks,
}
)
new_queries_per_image.append(query)
new_queries.append(new_queries_per_image)
return new_targets, new_queries
@register_model
def get_seem_model(cfg, **kwargs):
return GeneralizedSEEM(cfg) |