Spaces:
Sleeping
Sleeping
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------- | |
# SEEM -- Segment Everything Everywhere All at Once | |
# Licensed under The Apache License 2.0 [see LICENSE for details] | |
# Written by Xueyan Zou ([email protected]) | |
# -------------------------------------------------------- | |
import random | |
from typing import Tuple | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from kornia.contrib import distance_transform | |
from detectron2.structures import Boxes, ImageList, Instances, BitMasks | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from detectron2.data import MetadataCatalog | |
from .build import register_model | |
from ..utils import configurable, get_class_names, get_iou | |
from ..vision.backbone import build_backbone, Backbone | |
from ..body import build_xdecoder_head | |
from ..modules import sem_seg_postprocess, SetCriterion, HungarianMatcher, bbox_postprocess | |
from ..language import build_language_encoder | |
from ..language.loss import vl_similarity | |
from utilities.prompt_engineering import prompt_engineering | |
from utilities.constants import COCO_PANOPTIC_CLASSES | |
class GeneralizedSEEM(nn.Module): | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
criterion: nn.Module, | |
losses: dict, | |
num_queries: int, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
task_switch: dict, | |
phrase_prob: float, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
# inference | |
semantic_on: bool, | |
panoptic_on: bool, | |
instance_on: bool, | |
test_topk_per_image: int, | |
train_dataset_name: str, | |
interactive_mode: str, | |
interactive_iter: str, | |
dilation_kernel: torch.Tensor, | |
train_max_iter: int, | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
num_queries: int, number of queries | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
semantic_on: bool, whether to output semantic segmentation prediction | |
instance_on: bool, whether to output instance segmentation prediction | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.sem_seg_head = sem_seg_head | |
self.criterion = criterion | |
self.losses = losses | |
self.num_queries = num_queries | |
self.overlap_threshold = overlap_threshold | |
self.object_mask_threshold = object_mask_threshold | |
self.metadata = metadata | |
if size_divisibility < 0: | |
# use backbone size_divisibility if not set | |
size_divisibility = self.backbone.size_divisibility | |
self.size_divisibility = size_divisibility | |
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
# additional args | |
self.semantic_on = semantic_on | |
self.instance_on = instance_on | |
self.panoptic_on = panoptic_on | |
# caption argument | |
self.task_switch = task_switch | |
self.phrase_prob = phrase_prob | |
self.train_max_iter = train_max_iter | |
self.test_topk_per_image = test_topk_per_image | |
self.train_class_names = get_class_names(train_dataset_name) | |
self.interactive_mode = interactive_mode | |
self.interactive_iter = interactive_iter | |
if not self.semantic_on: | |
assert self.sem_seg_postprocess_before_inference | |
self.register_buffer("dilation_kernel", dilation_kernel) | |
def from_config(cls, cfg): | |
enc_cfg = cfg['MODEL']['ENCODER'] | |
dec_cfg = cfg['MODEL']['DECODER'] | |
# Loss parameters: | |
deep_supervision = dec_cfg['DEEP_SUPERVISION'] | |
no_object_weight = dec_cfg['NO_OBJECT_WEIGHT'] | |
# loss weights | |
loss_weights = {'mask': {'ce': dec_cfg['CLASS_WEIGHT'], 'dice': dec_cfg['DICE_WEIGHT'], 'bce': dec_cfg['MASK_WEIGHT']}, | |
'bbox': {'l1': dec_cfg['BBOX_WEIGHT'], 'giou': dec_cfg['GIOU_WEIGHT']}, | |
'spatial': {'ce': dec_cfg['SCLASS_WEIGHT'], 'dice': dec_cfg['SDICE_WEIGHT'], 'bce': dec_cfg['SMASK_WEIGHT']}, | |
'grounding': {'ce': dec_cfg['GCLASS_WEIGHT'], 'dice': dec_cfg['GDICE_WEIGHT'], 'bce': dec_cfg['GMASK_WEIGHT']}, | |
'openimage': {'ce': dec_cfg['OCLASS_WEIGHT'], 'dice': dec_cfg['ODICE_WEIGHT'], 'bce': dec_cfg['OMASK_WEIGHT']}} | |
openimage_switch = {'grounding': dec_cfg['OPENIMAGE']['GROUNDING'].get('ENABLED', False), | |
'mask': dec_cfg['OPENIMAGE'].get('ENABLED', False)} | |
task_switch = {'bbox': dec_cfg.get('DETECTION', False), | |
'mask': dec_cfg['MASK'].get('ENABLED', True), | |
'spatial': dec_cfg['SPATIAL'].get('ENABLED', False), | |
'grounding': dec_cfg['GROUNDING'].get('ENABLED', False), | |
'openimage': openimage_switch} | |
top_x_layers = {'mask': dec_cfg.get('TOP_MASK_LAYERS', 10), | |
'grounding': dec_cfg.get('TOP_GROUNDING_LAYERS', 10), | |
'openimage': dec_cfg.get('TOP_OPENIMAGE_LAYERS', 10), | |
'spatial': dec_cfg.get('TOP_SPATIAL_LAYERS', 10)} | |
spatial_cost = {"class_weight": dec_cfg['COST_SPATIAL']['CLASS_WEIGHT'], | |
"mask_weight": dec_cfg['COST_SPATIAL']['MASK_WEIGHT'], | |
"dice_weight": dec_cfg['COST_SPATIAL']['DICE_WEIGHT']} | |
extra = {'task_switch': task_switch} | |
backbone = build_backbone(cfg) | |
lang_encoder = build_language_encoder(cfg) | |
sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra=extra) | |
# building criterion | |
matcher = HungarianMatcher( | |
cost_class=loss_weights['mask']['ce'], | |
cost_mask=loss_weights['mask']['bce'], | |
cost_dice=loss_weights['mask']['dice'], | |
num_points=dec_cfg['TRAIN_NUM_POINTS'], | |
spatial_cost=spatial_cost, | |
) | |
# init weight dict and criterion loss functions. | |
losses = {'seg': [], 'openimage': []} | |
if task_switch['mask']: | |
losses['seg'] += ["labels", "masks"] | |
if task_switch['spatial']: | |
losses['seg'] += ["spatials"] | |
if task_switch['grounding']: | |
losses['seg'] += ["groundings"] | |
if task_switch['openimage']: | |
losses['openimage'] += ["labels_openimage", "masks"] | |
if task_switch['openimage']['grounding']: | |
losses['openimage'] += ["groundings"] | |
weight_dict = {} | |
for key, turn_on in task_switch.items(): | |
if turn_on: | |
if isinstance(loss_weights[key], dict): | |
# HACK it should support bbox in the future | |
for key_, weight in loss_weights[key].items(): | |
weight_dict["loss_{}_{}_0".format(key, key_)] = weight # NOTE: hard code for segmentation that has multiple loss | |
else: | |
weight_dict["loss_{}_0".format(key)] = loss_weights[key] | |
# generate full weight dict and remove not computed layers. | |
if deep_supervision: | |
dec_layers = dec_cfg['DEC_LAYERS'] | |
aux_weight_dict = {} | |
for i in range(dec_layers - 1): | |
for k, v in weight_dict.items(): | |
if (i+1) > (top_x_layers[k.split('_')[1]] - 1): | |
continue | |
aux_weight_dict.update({k.replace('_0', f"_{i+1}"): v}) | |
weight_dict.update(aux_weight_dict) | |
grd_weight = {'text': dec_cfg['GROUNDING']['TEXT_WEIGHT'], 'class': dec_cfg['GROUNDING']['CLASS_WEIGHT']} | |
# generate critenrion for loss function. | |
criterion = SetCriterion( | |
sem_seg_head.num_classes, | |
matcher=matcher, | |
weight_dict=weight_dict, | |
top_x_layers=top_x_layers, | |
eos_coef=no_object_weight, | |
losses=[], | |
num_points=dec_cfg['TRAIN_NUM_POINTS'], | |
oversample_ratio=dec_cfg['OVERSAMPLE_RATIO'], | |
importance_sample_ratio=dec_cfg['IMPORTANCE_SAMPLE_RATIO'], | |
grounding_weight=grd_weight, | |
) | |
# extra logistic | |
train_dataset_name = cfg['DATASETS']['TRAIN'][0] # HACK for only one training set. | |
train_max_iter = dec_cfg['SPATIAL'].get('MAX_ITER', 3) | |
phrase_prob = dec_cfg['CAPTION'].get('PHRASE_PROB', 0.5) | |
interactive_mode = cfg['STROKE_SAMPLER']['EVAL']['MODE'] | |
interactive_iter = cfg['STROKE_SAMPLER']['EVAL']['MAX_ITER'] | |
dilation = 3 | |
dilation_kernel = torch.ones((1, 1, dilation, dilation), device=torch.cuda.current_device()) | |
return { | |
"backbone": backbone, | |
"sem_seg_head": sem_seg_head, | |
"criterion": criterion, | |
"losses": losses, | |
"num_queries": dec_cfg['NUM_OBJECT_QUERIES'], | |
"object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'], | |
"overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'], | |
"metadata": MetadataCatalog.get(cfg['DATASETS']['TRAIN'][0]), | |
"size_divisibility": dec_cfg['SIZE_DIVISIBILITY'], | |
"sem_seg_postprocess_before_inference": ( | |
dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE'] | |
or dec_cfg['TEST']['PANOPTIC_ON'] | |
or dec_cfg['TEST']['INSTANCE_ON'] | |
), | |
"pixel_mean": cfg['INPUT']['PIXEL_MEAN'], | |
"pixel_std": cfg['INPUT']['PIXEL_STD'], | |
"task_switch": task_switch, | |
"phrase_prob": phrase_prob, | |
# inference | |
"semantic_on": dec_cfg['TEST']['SEMANTIC_ON'], | |
"instance_on": dec_cfg['TEST']['INSTANCE_ON'], | |
"panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'], | |
"test_topk_per_image": cfg['TEST']['DETECTIONS_PER_IMAGE'], | |
"train_dataset_name": train_dataset_name, | |
"interactive_mode": interactive_mode, | |
"interactive_iter": interactive_iter, | |
"dilation_kernel": dilation_kernel, | |
"train_max_iter": train_max_iter, | |
} | |
def device(self): | |
return self.pixel_mean.device | |
def forward(self, batched_inputs, mode='default'): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
if self.training: | |
losses = {} | |
if self.task_switch['mask'] or self.task_switch['grounding'] or self.task_switch['spatial']: | |
losses_seg = self.forward_seg(batched_inputs) | |
losses.update(losses_seg) | |
if self.task_switch['openimage'] and self.task_switch['openimage']['mask']: | |
losses_openimage = self.forward_openimage(batched_inputs['openimage']) | |
losses_openimage = {key.replace('mask', 'openimage'):value for key, value in losses_openimage.items()} | |
losses_openimage = {key.replace('grounding', 'grounding_openimage'):value for key, value in losses_openimage.items()} | |
losses.update(losses_openimage) | |
for k in list(losses.keys()): | |
if k in self.criterion.weight_dict: | |
losses[k] *= self.criterion.weight_dict[k] | |
else: # remove this loss if not specified in `weight_dict` | |
losses.pop(k) | |
return losses | |
else: | |
if mode == 'interactive': | |
return self.evaluate_interactive(batched_inputs) | |
elif mode == 'interactive_grounding': | |
return self.evaluate_interactive_grounding(batched_inputs) | |
elif mode == 'grounding_spatial': | |
return self.evaluate_grounding_sptial(batched_inputs, mode) | |
elif mode in ['grounding_phrasecut', 'grounding_refcoco']: | |
return self.evaluate_grounding(batched_inputs, mode) | |
else: | |
return self.evaluate(batched_inputs) | |
def forward_seg(self, batched_inputs): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(self.train_class_names, is_eval=False) | |
extra = {} | |
# mask classification target | |
if "instances" in batched_inputs[0]: | |
# input bounding box is checked to be correct. | |
targets = self.prepare_targets(batched_inputs, images) | |
if self.task_switch['grounding']: | |
grounding_tokens = [x['grounding_query_embs'] for x in targets] # need to pad for more than one grounding token | |
grounding_tokens = nn.utils.rnn.pad_sequence(grounding_tokens, padding_value=-1) | |
non_zero_query_mask = (grounding_tokens.sum(dim=-1) == -grounding_tokens.shape[-1]) | |
grounding_tokens[non_zero_query_mask] = 0 | |
extra['grounding_tokens'] = grounding_tokens | |
extra['grounding_nonzero_mask'] = non_zero_query_mask.t() | |
if self.task_switch['spatial']: | |
pos_masks = [x['spatial_query']['rand_shape'].to(self.device) for x in batched_inputs] | |
neg_masks = [(x['spatial_query']['rand_shape'].to(self.device) & False) for x in batched_inputs] | |
fp_masks = torch.stack([(x['spatial_query']['rand_shape'].to(self.device) & False) for x in batched_inputs]) | |
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks, 'false_positive_mask': fp_masks}) | |
features = self.backbone(images.tensor) | |
mask_features, _, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) | |
# forward spatial only without gradient | |
if self.task_switch['spatial']: | |
with torch.no_grad(): | |
# generate random integeter between [0,3] | |
rand_iter_num = random.randint(0, self.train_max_iter) | |
for i in range(rand_iter_num): | |
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, extra=extra, task='spatial') | |
extra.update(outputs) | |
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs)) | |
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, extra=extra, task='seg') | |
extra = {'lang_logit': self.sem_seg_head.predictor.lang_encoder.logit_scale, | |
'class_embeddings': getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('default')), | |
'false_positive_mask': extra['false_positive_mask']} | |
# bipartite matching-based loss | |
self.criterion.losses = self.losses['seg'] # seg criterion losses | |
losses = self.criterion(outputs, targets, extra) | |
del outputs | |
return losses | |
def evaluate(self, batched_inputs): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))] | |
# upsample masks | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
input_size = mask_pred_results.shape[-2:] | |
del outputs | |
processed_results = [] | |
for mask_cls_result, mask_pred_result, box_pred_result, input_per_image, image_size in zip( | |
mask_cls_results, mask_pred_results, box_pred_results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
if self.sem_seg_postprocess_before_inference: | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
mask_cls_result = mask_cls_result.to(mask_pred_result) | |
# semantic segmentation inference | |
if self.semantic_on: | |
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) | |
if not self.sem_seg_postprocess_before_inference: | |
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) | |
processed_results[-1]["sem_seg"] = r | |
# panoptic segmentation inference | |
if self.panoptic_on: | |
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
# instance segmentation inference | |
if self.instance_on: | |
if self.task_switch['bbox']: | |
box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width) | |
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result) | |
processed_results[-1]["instances"] = instance_r | |
return processed_results | |
def evaluate_interactive(self, batched_inputs): | |
assert self.task_switch['spatial'] | |
assert 'spatial_query' in batched_inputs[0] | |
assert len(batched_inputs) == 1, "only support batch size equal to 1" | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
extra = {} | |
features = self.backbone(images.tensor) | |
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) | |
image_sizes = [x["image"].shape[-2:] for x in batched_inputs] | |
nm = len(batched_inputs[0]['spatial_query']['rand_shape']) | |
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] | |
mask_features = mask_features.repeat(nm,1,1,1) | |
all_batch_shape_iou = [] | |
pred_smask_pointer = None | |
prev_smask_pointer = None | |
pred_smask_all = None | |
# visualization code | |
# v_pred_mask = [] | |
# v_pos_mask = [] | |
# v_neg_mask = [] | |
# v_gt_mask = batched_inputs[0]['spatial_query']['gt_masks'][0] | |
query_index = self.sem_seg_head.predictor.query_index | |
if self.interactive_mode in ['best', 'best_random']: | |
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) | |
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) | |
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) | |
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) | |
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) | |
elif self.interactive_mode == 'random': | |
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==1).unbind(0) | |
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor | |
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==-1).unbind(0) | |
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor | |
extra.update({'spatial_query_pos_mask': pos_masks[:,0:1].unbind(), 'spatial_query_neg_mask': neg_masks[:,0:1].unbind()}) | |
else: | |
assert False, "invalid interactive mode" | |
for i in range(self.interactive_iter): | |
# v_pos_mask += [extra['spatial_query_pos_mask'][0][0][:image_sizes[0][0],:image_sizes[0][1]].float().cpu().numpy()] | |
# v_neg_mask += [extra['spatial_query_neg_mask'][0][0][:image_sizes[0][0],:image_sizes[0][1]].float().cpu().numpy()] | |
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial') | |
extra.update(outputs) | |
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bilinear') | |
# v_pred_mask += [(pred_smask[0,0][:image_sizes[0][0],:image_sizes[0][1]].sigmoid() > 0.5).float().cpu().numpy()] | |
s = image_sizes[0] | |
b = batched_inputs[0] | |
pred_smask_all = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bilinear')[:,0].sigmoid() > 0.5 | |
gt_smask = b['gt_masks_orisize'] | |
ious = get_iou(gt_smask, pred_smask_all) | |
all_batch_shape_iou += [ious] | |
if (ious > 0.9).sum() == len(ious): | |
all_batch_shape_iou += [ious for j in range(self.interactive_iter-i-1)] | |
break | |
if self.interactive_mode in ['best', 'best_random']: | |
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs, mode=self.interactive_mode)) | |
elif self.interactive_mode == 'random': | |
extra.update({'spatial_query_pos_mask': pos_masks[:,i+1:i+2].unbind(), 'spatial_query_neg_mask': neg_masks[:,i+1:i+2].unbind()}) | |
else: | |
assert False, "invalid interactive mode" | |
all_batch_shape_iou = torch.stack(all_batch_shape_iou) | |
processed_results = [{"mask_iou": all_batch_shape_iou[:,i]} for i in range(len(all_batch_shape_iou[0]))] | |
return processed_results | |
def evaluate_interactive_single(self, batched_inputs, extra={}): | |
assert self.task_switch['spatial'] | |
assert 'spatial_query' in batched_inputs[0] | |
assert len(batched_inputs) == 1, "only support batch size equal to 1" | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
features = self.backbone(images.tensor) | |
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) | |
image_sizes = [x["image"].shape[-2:] for x in batched_inputs] | |
nm = len(batched_inputs[0]['spatial_query']['rand_shape']) | |
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] | |
mask_features = mask_features.repeat(nm,1,1,1) | |
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial') | |
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bicubic') | |
s = image_sizes[0] | |
b = batched_inputs[0] | |
pred_smask_ori = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bicubic')[:,0].sigmoid() > 0.5 | |
pred_smask_batch = pred_smask[:,:,:s[0],:s[1]].sigmoid() > 0.5 | |
ious = [] | |
if 'gt_masks_orisize' in b: | |
gt_smask = b['gt_masks_orisize'].to(pred_smask_ori.device) | |
ious = get_iou(gt_smask, pred_smask_ori) | |
processed_results = [{"mask_iou": ious, 'pred_mask_ori': pred_smask_ori, 'pred_mask_batch': pred_smask_batch}] | |
return processed_results | |
def evaluate_interactive_grounding(self, batched_inputs): | |
assert self.task_switch['spatial'] | |
assert 'spatial_query' in batched_inputs[0] | |
assert len(batched_inputs) == 1, "only support batch size equal to 1" | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
extra = {} | |
features = self.backbone(images.tensor) | |
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) | |
image_sizes = [x["image"].shape[-2:] for x in batched_inputs] | |
nm = len(batched_inputs[0]['spatial_query']['rand_shape']) | |
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] | |
mask_features = mask_features.repeat(nm,1,1,1) | |
all_batch_shape_iou = [] | |
pred_smask_pointer = None | |
prev_smask_pointer = None | |
pred_smask_all = None | |
# visualization code | |
# v_pred_mask = [] | |
# v_pos_mask = [] | |
# v_neg_mask = [] | |
# v_gt_mask = batched_inputs[0]['spatial_query']['gt_masks'][0] | |
query_index = self.sem_seg_head.predictor.query_index | |
if self.interactive_mode in ['best', 'best_random']: | |
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) | |
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) | |
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) | |
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) | |
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) | |
elif self.interactive_mode == 'random': | |
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==1).unbind(0) | |
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor | |
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)==-1).unbind(0) | |
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor | |
extra.update({'spatial_query_pos_mask': pos_masks[:,0:1].unbind(), 'spatial_query_neg_mask': neg_masks[:,0:1].unbind()}) | |
else: | |
assert False, "invalid interactive mode" | |
grd_texts = batched_inputs[0]['classes'] | |
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) | |
token_emb = gtext['token_emb'] | |
tokens = gtext['tokens'] | |
query_emb = nn.utils.rnn.pad_sequence([_token_emb[_tokens.bool()] for _token_emb, _tokens in zip(token_emb, tokens['attention_mask'])], padding_value=-1) | |
non_zero_query_mask = (query_emb.sum(dim=-1) < 0) | |
extra['grounding_tokens'] = query_emb | |
extra['grounding_nonzero_mask'] = non_zero_query_mask.t() | |
for i in range(self.interactive_iter): | |
# v_pos_mask += [extra['spatial_query_pos_mask'][0][0][:image_sizes[0][0],:image_sizes[0][1]].float().cpu().numpy()] | |
# v_neg_mask += [extra['spatial_query_neg_mask'][0][0][:image_sizes[0][0],:image_sizes[0][1]].float().cpu().numpy()] | |
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='spatial') | |
extra.update(outputs) | |
pred_smask = F.interpolate(outputs['prev_mask'], images.tensor.shape[-2:], mode='bilinear') | |
# v_pred_mask += [(pred_smask[0,0][:image_sizes[0][0],:image_sizes[0][1]].sigmoid() > 0.5).float().cpu().numpy()] | |
s = image_sizes[0] | |
b = batched_inputs[0] | |
pred_smask_all = F.interpolate(pred_smask[:,:,:s[0],:s[1]], (b['height'], b['width']), mode='bilinear')[:,0].sigmoid() > 0.5 | |
gt_smask = b['gt_masks_orisize'] | |
ious = get_iou(gt_smask, pred_smask_all) | |
all_batch_shape_iou += [ious] | |
if (ious > 0.9).sum() == len(ious): | |
all_batch_shape_iou += [ious for j in range(self.interactive_iter-i-1)] | |
break | |
if self.interactive_mode in ['best', 'best_random']: | |
extra.update(self.prepare_next_spaital_mask(extra, batched_inputs, mode=self.interactive_mode)) | |
elif self.interactive_mode == 'random': | |
extra.update({'spatial_query_pos_mask': pos_masks[:,i+1:i+2].unbind(), 'spatial_query_neg_mask': neg_masks[:,i+1:i+2].unbind()}) | |
else: | |
assert False, "invalid interactive mode" | |
all_batch_shape_iou = torch.stack(all_batch_shape_iou) | |
processed_results = [{"mask_iou": all_batch_shape_iou[:,i]} for i in range(len(all_batch_shape_iou[0]))] | |
# visualization | |
# VL.step() | |
# import cv2 | |
# v_masks = [] | |
# v_pos_masks = [] | |
# v_neg_masks = [] | |
# txt = [] | |
# img = batched_inputs[0]['image'].permute(1,2,0).cpu().numpy() | |
# mask_img = VL.overlay_single_mask_to_image(img[:,:,::-1], v_gt_mask.cpu().float().numpy()) | |
# acc_pos_mask = np.zeros(v_pos_mask[0].shape) | |
# acc_neg_mask = np.zeros(v_neg_mask[0].shape) | |
# for x,y,z,iou in zip(v_pos_mask, v_neg_mask, v_pred_mask, all_batch_shape_iou): | |
# # dilate x,y | |
# x = cv2.dilate(x, np.ones((5,5), np.uint8), iterations=3) | |
# y = cv2.dilate(y, np.ones((5,5), np.uint8), iterations=3) | |
# acc_pos_mask += x | |
# acc_neg_mask += y | |
# v_masks += [z] | |
# v_pos_masks += [acc_pos_mask.clip(0,1)] | |
# v_neg_masks += [acc_neg_mask.clip(0,1)] | |
# txt += ["pred_{}".format(str(iou[0].item())[0:5])] | |
# VL.add_image(img[:,:,::-1]) | |
# VL.insert(mask_img, "gt_mask") | |
# VL.overlay_obj_mask_to_image_withposneg(img[:,:,::-1], v_masks, v_pos_masks, v_neg_masks, txt, max_len=20) | |
return processed_results | |
def evaluate_referring_image(self, batched_inputs, extra={}): | |
assert self.task_switch['spatial'] | |
assert len(batched_inputs) == 1, "only support batch size equal to 1" | |
assert self.interactive_mode == 'best' | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
features = self.backbone(images.tensor) | |
mask_features, transformer_encoder_features, multi_scale_features = self.sem_seg_head.pixel_decoder.forward_features(features) | |
if 'spatial_query' in batched_inputs[0]: | |
image_sizes = [x["image"].shape[-2:] for x in batched_inputs] | |
nm = len(batched_inputs[0]['spatial_query']['rand_shape']) | |
multi_scale_features = [m.repeat(nm,1,1,1) for m in multi_scale_features] | |
mask_features = mask_features.repeat(nm,1,1,1) | |
query_index = self.sem_seg_head.predictor.query_index | |
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) | |
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor.unbind(0) | |
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) | |
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) | |
extra.update({'spatial_query_pos_mask': pos_masks, 'spatial_query_neg_mask': neg_masks}) | |
outputs = self.sem_seg_head.predictor(multi_scale_features, mask_features, target_queries=queries_grounding, extra=extra, task='refimg') | |
return outputs, images.tensor.shape | |
def evaluate_grounding(self, batched_inputs, mode): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" | |
extra = {} | |
# mask_pred_results = [] | |
# for idx, batch_per_image in enumerate(batched_inputs): | |
# grd_texts = batch_per_image['groundings']['texts'] | |
# grd_masks = [] | |
# for anno_text in grd_texts: | |
# gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False) | |
# token_emb = gtext['token_emb'] | |
# tokens = gtext['tokens'] | |
# grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]] | |
# extra['grounding_tokens'] = grd_emb[:,None] | |
# assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" | |
# features = self.backbone(images.tensor) | |
# outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') | |
# pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1] | |
# v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1] | |
# t_emb = grd_emb[-1:] | |
# t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
# v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
# temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale | |
# out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) | |
# matched_id = out_prob.max(0)[1] | |
# grd_masks += [pred_gmasks[matched_id,:,:]] | |
# mask_pred_results += [torch.cat(grd_masks)] | |
# comment for multi object inference. | |
mask_pred_results = [] | |
for idx, batch_per_image in enumerate(batched_inputs): | |
grd_texts = batch_per_image['groundings']['texts'] | |
grd_texts = [x[0] for x in grd_texts] | |
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) | |
token_emb = gtext['token_emb'] | |
tokens = gtext['tokens'] | |
query_emb = token_emb[tokens['attention_mask'].bool()] | |
non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device) | |
extra['grounding_tokens'] = query_emb[:,None] | |
extra['grounding_nonzero_mask'] = non_zero_query_mask.t() | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') | |
pred_gmasks = outputs['pred_gmasks'][idx] | |
v_emb = outputs['pred_gtexts'][idx] | |
t_emb = gtext['class_emb'] | |
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale | |
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) | |
matched_id = out_prob.max(0)[1] | |
mask_pred_results += [pred_gmasks[matched_id,:,:]] | |
for i in range(len(mask_pred_results)): | |
# upsample masks | |
mask_pred_results[i] = F.interpolate( | |
mask_pred_results[i][None,], | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
)[0] | |
processed_results = [] | |
for mask_pred_result, input_per_image, image_size in zip( | |
mask_pred_results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
processed_results[-1]['grounding_mask'] = mask_pred_result | |
# compute bbox | |
# bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes() | |
# bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) | |
# processed_results[-1]['grounding_box'] = bbox | |
return processed_results | |
def evaluate_grounding_sptial(self, batched_inputs, mode): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" | |
extra = {} | |
dilation = 3 | |
pos_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device)).unbind(0) | |
pos_masks = ImageList.from_tensors(pos_masks, self.size_divisibility).tensor | |
pos_masks = (F.conv2d(pos_masks.float(), self.dilation_kernel, padding=dilation//2) > 0).unbind(0) | |
neg_masks = (batched_inputs[0]['spatial_query']['rand_shape'].to(self.device) & False).unbind(0) | |
neg_masks = ImageList.from_tensors(neg_masks, self.size_divisibility).tensor.unbind(0) | |
mask_pred_results = [] | |
for idx, batch_per_image in enumerate(batched_inputs): | |
grd_texts = batch_per_image['groundings']['texts'] | |
grd_masks = [] | |
for idx2, anno_text in enumerate(grd_texts): | |
extra.update({'spatial_query_pos_mask': [pos_masks[idx2]], 'spatial_query_neg_mask': [neg_masks[idx2]]}) | |
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False) | |
token_emb = gtext['token_emb'] | |
tokens = gtext['tokens'] | |
grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]] | |
non_zero_query_mask = torch.zeros(grd_emb[:,None].shape[:-1], dtype=torch.bool, device=grd_emb.device) | |
extra['grounding_tokens'] = grd_emb[:,None] | |
extra['grounding_nonzero_mask'] = non_zero_query_mask.t() | |
assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') | |
pred_gmasks = outputs['pred_gmasks'][idx] | |
v_emb = outputs['pred_gtexts'][idx] | |
t_emb = gtext['class_emb'] | |
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale | |
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) | |
matched_id = out_prob.max(0)[1] | |
grd_masks += [pred_gmasks[matched_id,:,:]] | |
# grd_masks += [outputs['prev_mask'][0]] | |
mask_pred_results += [torch.cat(grd_masks)] | |
# comment for multi object inference. | |
# mask_pred_results = [] | |
# for idx, batch_per_image in enumerate(batched_inputs): | |
# grd_texts = batch_per_image['groundings']['texts'] | |
# grd_texts = [x[0] for x in grd_texts] | |
# gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) | |
# token_emb = gtext['token_emb'] | |
# tokens = gtext['tokens'] | |
# query_emb = token_emb[tokens['attention_mask'].bool()] | |
# non_zero_query_mask = torch.zeros(query_emb[:,None].shape[:-1], dtype=torch.bool, device=query_emb.device) | |
# extra['grounding_tokens'] = query_emb[:,None] | |
# extra['grounding_nonzero_mask'] = non_zero_query_mask.t() | |
# features = self.backbone(images.tensor) | |
# outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') | |
# pred_gmasks = outputs['pred_gmasks'][idx] | |
# v_emb = outputs['pred_gtexts'][idx] | |
# t_emb = gtext['class_emb'] | |
# t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
# v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
# temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale | |
# out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) | |
# matched_id = out_prob.max(0)[1] | |
# mask_pred_results += [pred_gmasks[matched_id,:,:]] | |
for i in range(len(mask_pred_results)): | |
# upsample masks | |
mask_pred_results[i] = F.interpolate( | |
mask_pred_results[i][None,], | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
)[0] | |
processed_results = [] | |
for mask_pred_result, input_per_image, image_size in zip( | |
mask_pred_results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
processed_results[-1]['grounding_mask'] = mask_pred_result | |
return processed_results | |
def prepare_targets(self, batched_inputs, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
for idx, batch_per_image in enumerate(batched_inputs): | |
targets_per_image = batch_per_image['instances'].to(self.device) | |
# pad gt | |
gt_masks = targets_per_image.gt_masks.tensor | |
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
gt_boxes = targets_per_image.gt_boxes.tensor | |
ratio = torch.tensor([w_pad,h_pad,w_pad,h_pad]).to(gt_boxes.device)[None,:] | |
gt_boxes = gt_boxes / ratio | |
xc,yc,w,h = (gt_boxes[:,0] + gt_boxes[:,2])/2, (gt_boxes[:,1] + gt_boxes[:,3])/2, gt_boxes[:,2] - gt_boxes[:,0], gt_boxes[:,3] - gt_boxes[:,1] | |
gt_boxes = torch.stack([xc,yc,w,h]).permute(1,0) | |
target_dict = { | |
"labels": targets_per_image.gt_classes, | |
"is_things": targets_per_image.is_things, | |
"masks": padded_masks, | |
"boxes": gt_boxes, | |
} | |
if self.task_switch['spatial']: | |
# prepare targets for spatial query | |
target_dict['gt_spatial_masks'] = batch_per_image['spatial_query']['gt_masks'] | |
if self.task_switch['grounding']: | |
grd_masks = batch_per_image['groundings']['masks'] | |
grd_texts = batch_per_image['groundings']['texts'] | |
grd_hash = batch_per_image['groundings']['hash'] | |
grd_task = batch_per_image['groundings']['mode'] | |
if len(grd_masks) == 0: | |
padded_masks = None | |
else: | |
padded_masks = torch.zeros((grd_masks.shape[0], h_pad, w_pad), dtype=grd_masks.dtype, device=grd_masks.device) | |
padded_masks[:, : grd_masks.shape[1], : grd_masks.shape[2]] = grd_masks | |
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) | |
token_emb = gtext['token_emb'] | |
tokens = gtext['tokens'] | |
unique_hash_id = np.unique(grd_hash, return_index=True)[1] | |
selected_mask = np.zeros(len(grd_hash)).astype(np.bool) | |
selected_mask[unique_hash_id] = True | |
selected_token_emb = token_emb[selected_mask] | |
selected_attn_mask = tokens['attention_mask'][selected_mask] | |
query_emb = selected_token_emb[selected_attn_mask.bool()] | |
class_idx = tokens['attention_mask'].sum(dim=-1) - 1 | |
class_idx = torch.stack((torch.arange(len(class_idx), device=class_idx.device), class_idx)).tolist() | |
class_emb = token_emb[class_idx] | |
target_dict['grounding_masks'] = padded_masks | |
target_dict['grounding_query_embs'] = query_emb | |
target_dict['grounding_class_embs'] = class_emb | |
target_dict['grounding_hash'] = grd_hash | |
target_dict['grounding_task'] = grd_task | |
new_targets.append(target_dict) | |
return new_targets | |
def prepare_next_spaital_mask(self, outputs, batched_inputs, mode='best'): | |
gt_masks = [batched_inputs[i]['spatial_query']['gt_masks'] for i in range(len(batched_inputs))] | |
if self.training: | |
gt_masks = ImageList.from_tensors(gt_masks, self.size_divisibility).tensor | |
else: | |
gt_masks = ImageList.from_tensors(gt_masks, self.size_divisibility).tensor.transpose(0,1) | |
pred_masks = (F.interpolate(outputs['prev_mask'], size=gt_masks.shape[-2:], mode='bilinear', align_corners=False).sigmoid() > 0.5) | |
prev_masks = torch.stack(outputs['spatial_query_pos_mask']) | torch.stack(outputs['spatial_query_neg_mask']) | |
fn = gt_masks & (~(gt_masks & pred_masks)) & (~prev_masks) # fn: False Negative, gt:1, pred:0, prev:0 | |
fp = (~gt_masks & pred_masks) & (~prev_masks) # fp: False Positive, gt:0, pred:1, prev:0 | |
# compute iou between gt and pred | |
iou = (gt_masks & pred_masks).sum(list(range(1,len(fn.shape)))) / ((gt_masks | pred_masks).sum(dim=list(range(1,len(fn.shape)))) + 1e-8) | |
fn_sum = fn.sum(dim=list(range(1,len(fn.shape)))) | |
fp_sum = fp.sum(dim=list(range(1,len(fp.shape)))) | |
is_postive = fn_sum > fp_sum | |
# is_postive = torch.ones(len(fn_sum), device=torch.cuda.current_device()).bool() | |
select_mask = torch.stack([fn[i] if is_postive[i] else fp[i] for i in range(len(fn))]) | |
# conv implementation | |
n,_,h,w = select_mask.shape | |
mask_dt = (distance_transform((~F.pad(select_mask, pad=(1, 1, 1, 1), mode='constant', value=0)).float())[:,:,1:-1,1:-1]).reshape(n,-1) | |
if mode == 'best': | |
max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist() | |
elif mode == 'best_random': | |
max_xy_idx = torch.stack([torch.arange(n), torch.cat([(mask_dt[i] > 0).nonzero()[torch.randint(0, len((mask_dt[i] > 0).nonzero()), (1,))][0] for i in range(len(mask_dt))]).cpu()]).tolist() | |
next_mask = torch.zeros(gt_masks.shape, device=torch.cuda.current_device()).bool() | |
next_mask = next_mask.view(n,-1) | |
next_mask[max_xy_idx] = True | |
next_mask = next_mask.reshape((n,1,h,w)).float() | |
dilation = 3 | |
next_mask = F.conv2d(next_mask, self.dilation_kernel, padding=dilation//2) > 0 | |
# determine whether next mask is zero | |
keep = (iou < 0.925) | |
next_mask = next_mask & keep.view(-1,1,1,1) | |
pos_mask = [] | |
neg_mask = [] | |
for idx, ip in enumerate(is_postive): | |
if ip: | |
pos_mask += [outputs['spatial_query_pos_mask'][idx] | next_mask[idx]] | |
neg_mask += [outputs['spatial_query_neg_mask'][idx]] | |
else: | |
pos_mask += [outputs['spatial_query_pos_mask'][idx]] | |
neg_mask += [outputs['spatial_query_neg_mask'][idx] | next_mask[idx]] | |
if 'false_positive_mask' in outputs: | |
fp = outputs['false_positive_mask'] | fp | |
return {'spatial_query_pos_mask': pos_mask, 'spatial_query_neg_mask': neg_mask, 'false_positive_mask': fp} | |
def semantic_inference(self, mask_cls, mask_pred): | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg | |
def panoptic_inference(self, mask_cls, mask_pred): | |
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) | |
mask_pred = mask_pred.sigmoid() | |
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) | |
cur_scores = scores[keep] | |
cur_classes = labels[keep] | |
cur_masks = mask_pred[keep] | |
cur_mask_cls = mask_cls[keep] | |
cur_mask_cls = cur_mask_cls[:, :-1] | |
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
h, w = cur_masks.shape[-2:] | |
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) | |
segments_info = [] | |
current_segment_id = 0 | |
if cur_masks.shape[0] == 0: | |
# We didn't detect any mask :( | |
return panoptic_seg, segments_info | |
else: | |
# take argmax | |
cur_mask_ids = cur_prob_masks.argmax(0) | |
stuff_memory_list = {} | |
for k in range(cur_classes.shape[0]): | |
pred_class = cur_classes[k].item() | |
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
mask_area = (cur_mask_ids == k).sum().item() | |
original_area = (cur_masks[k] >= 0.5).sum().item() | |
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) | |
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
if mask_area / original_area < self.overlap_threshold: | |
continue | |
# merge stuff regions | |
if not isthing: | |
if int(pred_class) in stuff_memory_list.keys(): | |
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] | |
continue | |
else: | |
stuff_memory_list[int(pred_class)] = current_segment_id + 1 | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": bool(isthing), | |
"category_id": int(pred_class), | |
} | |
) | |
return panoptic_seg, segments_info | |
def instance_inference(self, mask_cls, mask_pred, box_pred): | |
# mask_pred is already processed to have the same shape as original input | |
image_size = mask_pred.shape[-2:] | |
# [Q, K] | |
scores = F.softmax(mask_cls, dim=-1)[:, :-1] | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
labels_per_image = labels[topk_indices] | |
topk_indices = (topk_indices // self.sem_seg_head.num_classes) | |
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
mask_pred = mask_pred[topk_indices] | |
if box_pred is not None: | |
box_pred = box_pred[topk_indices] | |
# if this is panoptic segmentation, we only keep the "thing" classes | |
if self.panoptic_on: | |
keep = torch.zeros_like(scores_per_image).bool() | |
for i, lab in enumerate(labels_per_image): | |
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
scores_per_image = scores_per_image[keep] | |
labels_per_image = labels_per_image[keep] | |
mask_pred = mask_pred[keep] | |
if box_pred is not None: | |
box_pred = box_pred[keep] | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = (mask_pred > 0).float() | |
# result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
# Uncomment the following to get boxes from masks (this is slow) | |
if box_pred is not None: | |
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
else: | |
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
# calculate average mask prob | |
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
result.scores = scores_per_image * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
return result | |
def prepare_targets4query(self, targets, images, topk=5): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
new_queries = [] | |
for targets_per_image in targets: | |
# we randomly sample maximally topk concepts | |
unique_target_classes = [k for k in set(targets_per_image.gt_classes.tolist())] | |
selected_target_classes = random.sample(unique_target_classes, min(topk, len(unique_target_classes))) | |
new_targets_per_image = [] | |
new_queries_per_image = [] | |
for clss in selected_target_classes: | |
indices = (targets_per_image.gt_classes == clss).nonzero().view(-1) | |
# pad gt | |
gt_masks = targets_per_image.gt_masks[indices] | |
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
# convert class into concept name and then token seq | |
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings([COCO_PANOPTIC_CLASSES[clss]], name='grounding') | |
query = getattr(self.sem_seg_head.predictor.lang_encoder, 'grounding_text_embeddings') | |
new_targets.append( | |
{ | |
"labels": targets_per_image.gt_classes[indices], | |
"masks": padded_masks, | |
} | |
) | |
new_queries_per_image.append(query) | |
new_queries.append(new_queries_per_image) | |
return new_targets, new_queries | |
def get_seem_model(cfg, **kwargs): | |
return GeneralizedSEEM(cfg) |