Spaces:
Sleeping
Sleeping
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------- | |
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Xueyan Zou ([email protected]), Ziyi Dou, Jianwei Yang | |
# -------------------------------------------------------- | |
from typing import Tuple | |
import random | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
import numpy as np | |
from timm.models.layers import trunc_normal_ | |
from nltk.stem.lancaster import LancasterStemmer | |
from detectron2.structures import Boxes, ImageList, Instances, BitMasks, BoxMode | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from detectron2.data import MetadataCatalog | |
from .build import register_model | |
from ..utils import configurable, get_class_names | |
from ..vision.backbone import build_backbone, Backbone | |
from ..body import build_xdecoder_head | |
from ..modules import sem_seg_postprocess, SetCriterion, HungarianMatcher, bbox_postprocess | |
from ..language import build_language_encoder | |
from ..language.loss import vl_similarity, image_text_contrastive_loss_queue | |
from utilities.prompt_engineering import prompt_engineering | |
from utilities.constants import COCO_PANOPTIC_CLASSES | |
st = LancasterStemmer() | |
class GeneralizedXdecoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
criterion: nn.Module, | |
losses: dict, | |
num_queries: int, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
task_switch: dict, | |
phrase_prob: float, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
# inference | |
semantic_on: bool, | |
panoptic_on: bool, | |
instance_on: bool, | |
test_topk_per_image: int, | |
train_dataset_name: str, | |
retrieval_emsemble: bool, | |
backbone_dim: int, | |
dim_proj: int, | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
num_queries: int, number of queries | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
semantic_on: bool, whether to output semantic segmentation prediction | |
instance_on: bool, whether to output instance segmentation prediction | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.sem_seg_head = sem_seg_head | |
self.criterion = criterion | |
self.losses = losses | |
self.num_queries = num_queries | |
self.overlap_threshold = overlap_threshold | |
self.object_mask_threshold = object_mask_threshold | |
self.metadata = metadata | |
if size_divisibility < 0: | |
# use backbone size_divisibility if not set | |
size_divisibility = self.backbone.size_divisibility | |
self.size_divisibility = size_divisibility | |
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
# additional args | |
self.semantic_on = semantic_on | |
self.instance_on = instance_on | |
self.panoptic_on = panoptic_on | |
# caption argument | |
self.task_switch = task_switch | |
self.phrase_prob = phrase_prob | |
self.test_topk_per_image = test_topk_per_image | |
self.train_class_names = get_class_names(train_dataset_name) | |
self.retrieval_emsemble = retrieval_emsemble | |
# backbone itc loss | |
if task_switch['retrieval'] and retrieval_emsemble: | |
self.backbone_proj = nn.Parameter(torch.empty(backbone_dim, dim_proj)) | |
trunc_normal_(self.backbone_proj, std=.02) | |
if not self.semantic_on: | |
assert self.sem_seg_postprocess_before_inference | |
def from_config(cls, cfg): | |
enc_cfg = cfg['MODEL']['ENCODER'] | |
dec_cfg = cfg['MODEL']['DECODER'] | |
# Loss parameters: | |
deep_supervision = dec_cfg['DEEP_SUPERVISION'] | |
no_object_weight = dec_cfg['NO_OBJECT_WEIGHT'] | |
# loss weights, switcher for task, and top layers to compute loss | |
loss_weights = {'mask': {'ce': dec_cfg['CLASS_WEIGHT'], 'dice': dec_cfg['DICE_WEIGHT'], 'bce': dec_cfg['MASK_WEIGHT']}, | |
'bbox': {'l1': dec_cfg['BBOX_WEIGHT'], 'giou': dec_cfg['GIOU_WEIGHT']}, | |
'caption': dec_cfg['CAPTION_WEIGHT'], | |
'captioning': dec_cfg['CAPTIONING_WEIGHT'], | |
'retrieval': {'decoder': dec_cfg['RETRIEVAL_WEIGHT'], 'backbone': dec_cfg['BACKBONER_WEIGHT']}, | |
'grounding': {'ce': dec_cfg['GCLASS_WEIGHT'], 'dice': dec_cfg['GDICE_WEIGHT'], 'bce': dec_cfg['GMASK_WEIGHT']}} | |
task_switch = {'bbox': dec_cfg.get('DETECTION', False), | |
'mask': dec_cfg.get('MASK', True), | |
'caption': dec_cfg['CAPTION'].get('ENABLED', False), | |
'captioning': dec_cfg['CAPTIONING'].get('ENABLED', False), | |
'retrieval': dec_cfg['RETRIEVAL'].get('ENABLED', False), | |
'grounding': dec_cfg['GROUNDING'].get('ENABLED', False)} | |
top_x_layers = {'mask': dec_cfg.get('TOP_MASK_LAYERS', 10), | |
'caption': dec_cfg.get('TOP_CAPTION_LAYERS', 10), | |
'captioning': dec_cfg.get('TOP_CAPTIONING_LAYERS', 10), | |
'retrieval': dec_cfg.get('TOP_RETRIEVAL_LAYERS', 10), | |
'grounding': dec_cfg.get('TOP_GROUNDING_LAYERS', 10),} | |
# build model | |
extra = {'task_switch': task_switch} | |
backbone = build_backbone(cfg) | |
lang_encoder = build_language_encoder(cfg) | |
sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra) | |
# building criterion | |
matcher = HungarianMatcher( | |
cost_class=loss_weights['mask']['ce'], | |
cost_mask=loss_weights['mask']['bce'], | |
cost_dice=loss_weights['mask']['dice'], | |
num_points=dec_cfg['TRAIN_NUM_POINTS'], | |
) | |
# init weight dict and criterion loss functions. | |
losses = {'seg': [], 'vlp': []} | |
if task_switch['mask']: | |
losses['seg'] += ["labels", "masks"] | |
if task_switch['caption']: | |
losses['seg'] += ["captions"] | |
if task_switch['grounding']: | |
losses['seg'] += ["groundings"] | |
if task_switch['captioning']: | |
losses['vlp'] += ["captionings"] | |
if task_switch['retrieval']: | |
losses['vlp'] += ["retrievals"] | |
weight_dict = {} | |
for key, turn_on in task_switch.items(): | |
if turn_on: | |
if isinstance(loss_weights[key], dict): | |
# HACK it should support bbox in the future | |
for key_, weight in loss_weights[key].items(): | |
weight_dict["loss_{}_{}_0".format(key, key_)] = weight # NOTE: hard code for segmentation that has multiple loss | |
else: | |
weight_dict["loss_{}_0".format(key)] = loss_weights[key] | |
# generate full weight dict and remove not computed layers. | |
if deep_supervision: | |
dec_layers = dec_cfg['DEC_LAYERS'] | |
aux_weight_dict = {} | |
for i in range(dec_layers - 1): | |
for k, v in weight_dict.items(): | |
if (i+1) > (top_x_layers[k.split('_')[1]] - 1): | |
continue | |
aux_weight_dict.update({k.replace('_0', f"_{i+1}"): v}) | |
weight_dict.update(aux_weight_dict) | |
grd_weight = {'text': dec_cfg['GROUNDING']['TEXT_WEIGHT'], 'class': dec_cfg['GROUNDING']['CLASS_WEIGHT']} | |
# generate critenrion for loss function. | |
criterion = SetCriterion( | |
sem_seg_head.num_classes, | |
matcher=matcher, | |
weight_dict=weight_dict, | |
top_x_layers=top_x_layers, | |
eos_coef=no_object_weight, | |
losses=[], | |
num_points=dec_cfg['TRAIN_NUM_POINTS'], | |
oversample_ratio=dec_cfg['OVERSAMPLE_RATIO'], | |
importance_sample_ratio=dec_cfg['IMPORTANCE_SAMPLE_RATIO'], | |
grounding_weight=grd_weight, | |
) | |
# extra logistic | |
train_dataset_name = cfg['DATASETS']['TRAIN'][0] # HACK for only one training set. | |
phrase_prob = dec_cfg['CAPTION'].get('PHRASE_PROB', 0.5) | |
return { | |
"backbone": backbone, | |
"sem_seg_head": sem_seg_head, | |
"criterion": criterion, | |
"losses": losses, | |
"num_queries": dec_cfg['NUM_OBJECT_QUERIES'], | |
"object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'], | |
"overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'], | |
"metadata": MetadataCatalog.get(cfg['DATASETS']['TRAIN'][0]), | |
"size_divisibility": dec_cfg['SIZE_DIVISIBILITY'], | |
"sem_seg_postprocess_before_inference": ( | |
dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE'] | |
or dec_cfg['TEST']['PANOPTIC_ON'] | |
or dec_cfg['TEST']['INSTANCE_ON'] | |
), | |
"pixel_mean": cfg['INPUT']['PIXEL_MEAN'], | |
"pixel_std": cfg['INPUT']['PIXEL_STD'], | |
"task_switch": task_switch, | |
"phrase_prob": phrase_prob, | |
# inference | |
"semantic_on": dec_cfg['TEST']['SEMANTIC_ON'], | |
"instance_on": dec_cfg['TEST']['INSTANCE_ON'], | |
"panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'], | |
"test_topk_per_image": cfg['COCO']['TEST']['DETECTIONS_PER_IMAGE'], | |
"train_dataset_name": train_dataset_name, | |
"retrieval_emsemble": dec_cfg['RETRIEVAL']['ENSEMBLE'], | |
"backbone_dim": cfg['MODEL']['BACKBONE_DIM'], | |
"dim_proj": cfg['MODEL']['DIM_PROJ'], | |
} | |
def device(self): | |
return self.pixel_mean.device | |
def forward(self, batched_inputs, mode=None): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
if self.training: | |
losses = {} | |
if self.task_switch['mask']: | |
losses_seg = self.forward_seg(batched_inputs['coco']) | |
losses.update(losses_seg) | |
if self.task_switch['retrieval'] or self.task_switch['captioning']: | |
losses_vlp = self.forward_vlp(batched_inputs['vlp']) | |
losses.update(losses_vlp) | |
for k in list(losses.keys()): | |
if k in self.criterion.weight_dict: | |
losses[k] *= self.criterion.weight_dict[k] | |
else: # remove this loss if not specified in `weight_dict` | |
losses.pop(k) | |
return losses | |
else: | |
if mode == 'retrieval': | |
return self.evaluate_retrieval(batched_inputs) | |
elif mode == 'captioning': | |
return self.evaluate_captioning(batched_inputs) | |
elif mode == 'classification': | |
return self.evaluate_classification(batched_inputs) | |
elif mode == 'grounding_refcoco': | |
return self.evaluate_grounding(batched_inputs, mode) | |
else: | |
return self.evaluate(batched_inputs) | |
def forward_seg(self, batched_inputs): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(self.train_class_names, is_eval=False) | |
extra = {} | |
# mask classification target | |
if "instances" in batched_inputs[0]: | |
# input bounding box is checked to be correct. | |
targets = self.prepare_targets(batched_inputs, images) | |
if self.task_switch['grounding']: | |
grounding_tokens = [x['grounding_query_embs'] for x in targets] # need to pad for more than one grounding token | |
grounding_tokens = nn.utils.rnn.pad_sequence(grounding_tokens) | |
extra['grounding_tokens'] = grounding_tokens | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, extra=extra) | |
_outputs = {} | |
for key, value in outputs.items(): | |
if key == 'pred_logits': | |
_outputs[key] = value[:,:self.num_queries-1] | |
elif key == 'pred_masks': | |
_outputs[key] = value[:,:self.num_queries-1] | |
if self.task_switch['grounding']: | |
_outputs['pred_gmasks'] = value[:,self.num_queries:2*self.num_queries-1] | |
elif key == 'pred_captions': | |
_outputs[key] = value[:,:self.num_queries-1] | |
if self.task_switch['grounding']: | |
_outputs['pred_gtexts'] = value[:,self.num_queries:2*self.num_queries-1] | |
elif key == 'aux_outputs': | |
_outputs[key] = [] | |
for i in range(len(value)): | |
_outputs[key] += [{}] | |
for _key, _value in value[i].items(): | |
if _key == 'pred_logits': | |
_outputs[key][i][_key] = _value[:,:self.num_queries-1] | |
elif _key == 'pred_masks': | |
_outputs[key][i][_key] = _value[:,:self.num_queries-1] | |
if self.task_switch['grounding']: | |
_outputs[key][i]['pred_gmasks'] = _value[:,self.num_queries:2*self.num_queries-1] | |
elif _key == 'pred_captions': | |
_outputs[key][i][_key] = _value[:,:self.num_queries-1] | |
if self.task_switch['grounding']: | |
_outputs[key][i]['pred_gtexts'] = _value[:,self.num_queries:2*self.num_queries-1] | |
outputs = _outputs | |
extra = {'lang_logit': self.sem_seg_head.predictor.lang_encoder.logit_scale, | |
'class_embeddings': getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('default'))} | |
# bipartite matching-based loss | |
self.criterion.losses = self.losses['seg'] # seg criterion losses | |
losses = self.criterion(outputs, targets, extra) | |
del outputs | |
del _outputs | |
return losses | |
def forward_vlp(self, batched_inputs): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
targets_vlp = self.prepare_vlp_targets(batched_inputs, images.tensor.device) | |
extra = {"token_embedding": self.sem_seg_head.predictor.lang_encoder.lang_encoder.token_embedding, | |
"lang_encoder": self.sem_seg_head.predictor.lang_encoder, | |
"training": self.training} | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, target_queries=None, target_vlp=targets_vlp, task='vlp', extra=extra) | |
for key, value in outputs.items(): | |
if key == 'pred_captionings': | |
outputs[key] = value | |
elif key == 'pred_captions': | |
# outputs[key] = value[:,-1:] | |
outputs[key] = value | |
elif key == 'aux_outputs': | |
outputs[key] = [] | |
for i in range(len(value)): | |
outputs[key] += [{}] | |
for _key, _value in value[i].items(): | |
if _key == 'pred_captions': | |
# outputs[key][i][_key] = _value[:,-1:] | |
outputs[key][i][_key] = _value | |
elif _key == 'pred_captionings': | |
outputs[key][i][_key] = _value | |
self.criterion.losses = self.losses['vlp'] # seg criterion losses | |
losses = self.criterion.forward_vlp(outputs, targets_vlp, extra) | |
del outputs | |
if self.task_switch['retrieval'] and self.retrieval_emsemble: | |
# compute backbone vlp. | |
v_emb = features['res5'] | |
bs,nc,_,_ = v_emb.shape | |
v_emb = v_emb.reshape(bs,nc,-1) | |
v_emb = F.adaptive_avg_pool1d(v_emb, 1).reshape(bs,nc) @ self.backbone_proj | |
t_emb = torch.cat([x['caption_proj'] for x in targets_vlp], dim=0) | |
loss_contrast = image_text_contrastive_loss_queue(v_emb, t_emb, self.sem_seg_head.predictor.lang_encoder, None) | |
losses['loss_retrieval_backbone_0'] = loss_contrast | |
return losses | |
def evaluate(self, batched_inputs): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))] | |
caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))] | |
# upsample masks | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bicubic", | |
align_corners=False, | |
antialias=True | |
) | |
input_size = mask_pred_results.shape[-2:] | |
keep_sem_bgd = self.metadata.keep_sem_bgd if hasattr(self.metadata, 'keep_sem_bgd') else False | |
del outputs | |
processed_results = [] | |
for mask_cls_result, mask_pred_result, box_pred_result, caption_pred_result, input_per_image, image_size in zip( | |
mask_cls_results, mask_pred_results, box_pred_results, caption_pred_results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
if self.sem_seg_postprocess_before_inference: | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
mask_cls_result = mask_cls_result.to(mask_pred_result) | |
# semantic segmentation inference | |
if self.semantic_on: | |
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result, keep_sem_bgd) | |
if not self.sem_seg_postprocess_before_inference: | |
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) | |
processed_results[-1]["sem_seg"] = r | |
# panoptic segmentation inference | |
if self.panoptic_on: | |
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
# instance segmentation inference | |
if self.instance_on: | |
if self.task_switch['bbox']: | |
box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width) | |
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result) | |
processed_results[-1]["instances"] = instance_r | |
if self.task_switch['caption']: | |
processed_results[-1]["captions"] = caption_pred_result | |
processed_results[-1]["masks"] = mask_pred_result | |
return processed_results | |
def evaluate_retrieval(self, batched_inputs): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
v_emb_it = outputs['pred_captions'][:,-1] | |
# compute backbone score | |
if self.task_switch['retrieval'] and self.retrieval_emsemble: | |
_v_emb_it = features['res5'] | |
bs,nc,_,_ = _v_emb_it.shape | |
_v_emb_it = _v_emb_it.reshape(bs,nc,-1) | |
_v_emb_it = F.adaptive_avg_pool1d(_v_emb_it, 1).reshape(bs,nc) @ self.backbone_proj | |
processed_results = [] | |
for idx, batch_data in enumerate(batched_inputs): | |
caption_ids = [] | |
t_emb_its = [] | |
processed_results.append({}) | |
for caption in batch_data['captions']: | |
lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(caption) | |
t_emb_it = lang_results['class_emb'] | |
caption_ids.append(batch_data['image_id']) | |
t_emb_its.append(t_emb_it) | |
t_emb_it = torch.cat(t_emb_its, dim=0) | |
image_embeds = [v_emb_it[idx].unsqueeze(0)] | |
if self.task_switch['retrieval'] and self.retrieval_emsemble: | |
image_embeds += [_v_emb_it[idx].unsqueeze(0)] | |
caption_results = { | |
'image_embeds': image_embeds, | |
'text_embeds': t_emb_it, | |
'caption_ids': caption_ids, | |
'image_ids': batch_data['image_id'], | |
} | |
processed_results[-1]["caption"] = caption_results | |
del features | |
return processed_results | |
def evaluate_captioning(self, batched_inputs): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
if not hasattr(self, 'start_token'): | |
self.start_token = torch.tensor([[49406]*77], device=self.device) | |
targets = targets_grounding = queries_grounding = None | |
features = self.backbone(images.tensor) | |
captioning_mask = None | |
if 'captioning_mask' in batched_inputs[-1]: | |
captioning_mask = torch.cat([x['captioning_mask'] for x in batched_inputs]) | |
outputs = self.sem_seg_head(features, target_queries=queries_grounding, task='captioning_infer', extra={'start_token': self.start_token, 'captioning_mask': captioning_mask}) | |
processed_results = [] | |
for idx, batch_data in enumerate(batched_inputs): | |
processed_results.append({}) | |
processed_results[-1]["captioning_token"] = outputs['pred_captionings'][idx] | |
processed_results[-1]["captioning_text"] = outputs['pred_texts'][idx].split('.')[0] | |
processed_results[-1]["image_id"] = batched_inputs[idx]['image_id'] | |
return processed_results | |
def evaluate_classification(self, batched_inputs): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
processed_results = [] | |
for idx, batch_data in enumerate(batched_inputs): | |
processed_results.append({}) | |
processed_results[-1]["pred_class"] = outputs['pred_logits'][idx,-1] | |
return processed_results | |
def evaluate_grounding_baseline(self, batched_inputs, mode): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
img_bs = images.tensor.shape[0] | |
targets = targets_grounding = queries_grounding = None | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, target_queries=queries_grounding) | |
mask_pred_results = outputs["pred_masks"] | |
caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))] | |
# upsample masks | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bicubic", | |
align_corners=False, | |
antialias=True | |
) | |
processed_results = [] | |
for mask_pred_result, caption_pred_result, input_per_image, image_size in zip( | |
mask_pred_results, caption_pred_results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
)[:-1] | |
texts_all = input_per_image['groundings']['texts'] | |
grd_masks = [] | |
for texts in texts_all: | |
if mode == 'grounding_refcoco': | |
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=False, is_eval=True) | |
elif mode == 'grounding_phrasecut': | |
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=True, is_eval=False) | |
t_emb = getattr(self.sem_seg_head.predictor.lang_encoder, "{}_text_embeddings".format('grounding')).t() | |
v_emb = caption_pred_result[:-1] | |
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
vt_sim = v_emb @ t_emb | |
max_id = vt_sim.max(0)[1][0] | |
grd_masks += [mask_pred_result[max_id]] | |
processed_results[-1]['grounding_mask'] = torch.stack(grd_masks) | |
return processed_results | |
def evaluate_grounding(self, batched_inputs, mode): | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
extra = {} | |
# mask_pred_results = [] | |
# for idx, batch_per_image in enumerate(batched_inputs): | |
# grd_texts = batch_per_image['groundings']['texts'] | |
# grd_masks = [] | |
# for anno_text in grd_texts: | |
# gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False) | |
# token_emb = gtext['token_emb'] | |
# tokens = gtext['tokens'] | |
# grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]] | |
# extra['grounding_tokens'] = grd_emb[:,None] | |
# assert len(images.tensor) == 1, "grounding evaluation only support single batch size now" | |
# features = self.backbone(images.tensor) | |
# outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') | |
# pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1] | |
# v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1] | |
# t_emb = grd_emb[-1:] | |
# t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
# v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
# temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale | |
# out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) | |
# matched_id = out_prob.max(0)[1] | |
# grd_masks += [pred_gmasks[matched_id,:,:]] | |
# mask_pred_results += [torch.cat(grd_masks)] | |
# comment for multi object inference. | |
mask_pred_results = [] | |
for idx, batch_per_image in enumerate(batched_inputs): | |
grd_texts = batch_per_image['groundings']['texts'] | |
grd_texts = [x[0] for x in grd_texts] | |
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) | |
token_emb = gtext['token_emb'] | |
tokens = gtext['tokens'] | |
query_emb = token_emb[tokens['attention_mask'].bool()] | |
extra['grounding_tokens'] = query_emb[:,None] | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval') | |
pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1] | |
v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1] | |
t_emb = gtext['class_emb'] | |
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale | |
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature) | |
matched_id = out_prob.max(0)[1] | |
mask_pred_results += [pred_gmasks[matched_id,:,:]] | |
for i in range(len(mask_pred_results)): | |
# upsample masks | |
mask_pred_results[i] = F.interpolate( | |
mask_pred_results[i][None,], | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bicubic", | |
align_corners=False, | |
antialias=True | |
)[0] | |
processed_results = [] | |
for mask_pred_result, input_per_image, image_size in zip( | |
mask_pred_results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
processed_results[-1]['grounding_mask'] = mask_pred_result | |
# compute bbox | |
# bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes() | |
# bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) | |
# processed_results[-1]['grounding_box'] = bbox | |
return processed_results | |
def prepare_vlp_targets(self, batched_inputs, device): | |
input_ids = [] | |
attention_mask = [] | |
for cnt, x in enumerate(batched_inputs): | |
captions = x['captions'] | |
randid = random.randint(0, len(captions)-1) | |
input_ids += x['tokens']['input_ids'][randid:randid+1] | |
attention_mask += x['tokens']['attention_mask'][randid:randid+1] | |
input_ids = torch.stack(input_ids) | |
attention_mask = torch.stack(attention_mask) | |
tokens = {"input_ids": input_ids, "attention_mask": attention_mask} | |
lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(tokens, token=True) | |
target_vlp = [] | |
for cnt, x in enumerate(batched_inputs): | |
target_dict = {} | |
target_dict["caption_tokens"] = lang_results['token_emb'][cnt:cnt+1] | |
target_dict["caption_proj"] = lang_results['class_emb'][cnt:cnt+1] | |
target_dict["caption_tokenids"] = lang_results['tokens']['input_ids'][cnt:cnt+1] | |
target_dict["caption_mask"] = lang_results['tokens']['attention_mask'][cnt:cnt+1] | |
target_vlp.append(target_dict) | |
return target_vlp | |
def prepare_targets(self, batched_inputs, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
for idx, batch_per_image in enumerate(batched_inputs): | |
targets_per_image = batch_per_image["instances"].to(self.device) | |
# pad gt | |
gt_masks = targets_per_image.gt_masks | |
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
gt_boxes = targets_per_image.gt_boxes.tensor | |
ratio = torch.tensor([w_pad,h_pad,w_pad,h_pad]).to(gt_boxes.device)[None,:] | |
gt_boxes = gt_boxes / ratio | |
xc,yc,w,h = (gt_boxes[:,0] + gt_boxes[:,2])/2, (gt_boxes[:,1] + gt_boxes[:,3])/2, gt_boxes[:,2] - gt_boxes[:,0], gt_boxes[:,3] - gt_boxes[:,1] | |
gt_boxes = torch.stack([xc,yc,w,h]).permute(1,0) | |
target_dict = { | |
"labels": targets_per_image.gt_classes, | |
"is_things": targets_per_image.is_things, | |
"masks": padded_masks, | |
"boxes": gt_boxes | |
} | |
if self.task_switch['caption']: | |
caption = batch_per_image["captions"] | |
caption_noun = batch_per_image["captions_noun"] | |
rand_index = random.randint(0, len(caption)-1) | |
text = caption[rand_index] | |
nouns = caption_noun[rand_index] | |
noun_captions = [prompt_engineering(noun, topk=10000, suffix='.') for noun in nouns] + [text] | |
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(noun_captions, is_eval=False, name='caption_noun', prompt=False) | |
ctext = getattr(self.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('caption_noun')) | |
target_dict["captions"] = ctext | |
target_dict["captions_hash"] = [(hash(st.stem(txt)) % 10**16) for txt in (nouns + [text])] | |
target_dict["labels_hash"] = [(hash(st.stem(COCO_PANOPTIC_CLASSES[label_id].replace('-other','').replace('-merged','').replace('-stuff',''))) % 10**16) for label_id in target_dict['labels']] | |
if self.task_switch['grounding']: | |
grd_masks = batch_per_image['groundings']['masks'] | |
grd_texts = batch_per_image['groundings']['texts'] | |
grd_hash = batch_per_image['groundings']['hash'] | |
grd_task = batch_per_image['groundings']['mode'] | |
if len(grd_masks) == 0: | |
padded_masks = None | |
else: | |
padded_masks = torch.zeros((grd_masks.shape[0], h_pad, w_pad), dtype=grd_masks.dtype, device=grd_masks.device) | |
padded_masks[:, : grd_masks.shape[1], : grd_masks.shape[2]] = grd_masks | |
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False) | |
token_emb = gtext['token_emb'] | |
tokens = gtext['tokens'] | |
unique_hash_id = np.unique(grd_hash, return_index=True)[1] | |
selected_mask = np.zeros(len(grd_hash)).astype(np.bool) | |
selected_mask[unique_hash_id] = True | |
selected_token_emb = token_emb[selected_mask] | |
selected_attn_mask = tokens['attention_mask'][selected_mask] | |
query_emb = selected_token_emb[selected_attn_mask.bool()] | |
class_idx = tokens['attention_mask'].sum(dim=-1) - 1 | |
class_idx = torch.stack((torch.arange(len(class_idx), device=class_idx.device), class_idx)).tolist() | |
class_emb = token_emb[class_idx] | |
target_dict['grounding_masks'] = padded_masks | |
target_dict['grounding_query_embs'] = query_emb | |
target_dict['grounding_class_embs'] = class_emb | |
target_dict['grounding_hash'] = grd_hash | |
target_dict['grounding_task'] = grd_task | |
new_targets.append(target_dict) | |
return new_targets | |
def semantic_inference(self, mask_cls, mask_pred, keep_sem_bgd=False): | |
if keep_sem_bgd: | |
mask_cls = F.softmax(mask_cls, dim=-1) | |
else: | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg | |
def panoptic_inference(self, mask_cls, mask_pred): | |
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) | |
mask_pred = mask_pred.sigmoid() | |
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) | |
cur_scores = scores[keep] | |
cur_classes = labels[keep] | |
cur_masks = mask_pred[keep] | |
cur_mask_cls = mask_cls[keep] | |
cur_mask_cls = cur_mask_cls[:, :-1] | |
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
h, w = cur_masks.shape[-2:] | |
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) | |
segments_info = [] | |
current_segment_id = 0 | |
if cur_masks.shape[0] == 0: | |
# We didn't detect any mask :( | |
return panoptic_seg, segments_info | |
else: | |
# take argmax | |
cur_mask_ids = cur_prob_masks.argmax(0) | |
stuff_memory_list = {} | |
thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {} | |
for k in range(cur_classes.shape[0]): | |
pred_class = cur_classes[k].item() | |
isthing = pred_class in thing_dataset_id_to_contiguous_id.values() | |
mask_area = (cur_mask_ids == k).sum().item() | |
original_area = (cur_masks[k] >= 0.5).sum().item() | |
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) | |
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
if mask_area / original_area < self.overlap_threshold: | |
continue | |
# merge stuff regions | |
if not isthing: | |
if int(pred_class) in stuff_memory_list.keys(): | |
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] | |
continue | |
else: | |
stuff_memory_list[int(pred_class)] = current_segment_id + 1 | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": bool(isthing), | |
"category_id": int(pred_class), | |
} | |
) | |
return panoptic_seg, segments_info | |
def instance_inference(self, mask_cls, mask_pred, box_pred): | |
# mask_pred is already processed to have the same shape as original input | |
image_size = mask_pred.shape[-2:] | |
# [Q, K] | |
scores = F.softmax(mask_cls, dim=-1)[:, :-1] | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
labels_per_image = labels[topk_indices] | |
topk_indices = (topk_indices // self.sem_seg_head.num_classes) | |
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
mask_pred = mask_pred[topk_indices] | |
if box_pred is not None: | |
box_pred = box_pred[topk_indices] | |
# if this is panoptic segmentation, we only keep the "thing" classes | |
if self.panoptic_on: | |
thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {} | |
keep = torch.zeros_like(scores_per_image).bool() | |
for i, lab in enumerate(labels_per_image): | |
keep[i] = lab in thing_dataset_id_to_contiguous_id.values() | |
scores_per_image = scores_per_image[keep] | |
labels_per_image = labels_per_image[keep] | |
mask_pred = mask_pred[keep] | |
if box_pred is not None: | |
box_pred = box_pred[keep] | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = (mask_pred > 0).float() | |
# result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
# Uncomment the following to get boxes from masks (this is slow) | |
if box_pred is not None: | |
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
else: | |
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
# calculate average mask prob | |
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
result.scores = scores_per_image * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
return result | |
def get_xdecoder_model(cfg, **kwargs): | |
return GeneralizedXdecoder(cfg) |