Spaces:
Sleeping
Sleeping
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from transformers import CLIPTokenizer, CLIPTokenizerFast | |
from transformers import AutoTokenizer | |
from .transformer import * | |
from .build import * | |
def build_lang_encoder(config_encoder, tokenizer, verbose, **kwargs): | |
model_name = config_encoder['NAME'] | |
if not is_lang_encoder(model_name): | |
raise ValueError(f'Unkown model: {model_name}') | |
return lang_encoders(model_name)(config_encoder, tokenizer, verbose, **kwargs) | |
def build_tokenizer(config_encoder): | |
tokenizer = None | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
if config_encoder['TOKENIZER'] == 'clip': | |
pretrained_tokenizer = config_encoder.get( | |
'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32' | |
) | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_tokenizer) | |
tokenizer.add_special_tokens({'cls_token': tokenizer.eos_token}) | |
elif config_encoder['TOKENIZER'] == 'clip-fast': | |
pretrained_tokenizer = config_encoder.get( | |
'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32' | |
) | |
tokenizer = CLIPTokenizerFast.from_pretrained(pretrained_tokenizer, from_slow=True) | |
elif config_encoder['TOKENIZER'] == 'biomed-clip': | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext") | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(config_encoder['TOKENIZER']) | |
return tokenizer |