kernel-luso-comfort commited on
Commit
6bd0d8c
·
1 Parent(s): 7b7636a

Add development mode for mocking model initialization and prediction functions

Browse files
Files changed (1) hide show
  1. main.py +19 -2
main.py CHANGED
@@ -24,6 +24,8 @@ from utilities.arguments import load_opt_from_config_files
24
  from utilities.constants import BIOMED_CLASSES
25
  from inference_utils.inference import interactive_infer_image
26
 
 
 
27
 
28
  gr.set_static_paths(["assets"])
29
 
@@ -76,7 +78,7 @@ def run():
76
  demo.launch(server_name="0.0.0.0", server_port=7860)
77
 
78
 
79
- def init_model():
80
  # Download model
81
  model_file = hf_hub_download(
82
  repo_id="microsoft/BiomedParse",
@@ -98,7 +100,11 @@ def init_model():
98
  return model
99
 
100
 
101
- def predict(image, prompts):
 
 
 
 
102
  if not prompts:
103
  return None
104
 
@@ -121,6 +127,17 @@ def predict(image, prompts):
121
  return pred_overlay
122
 
123
 
 
 
 
 
 
 
 
 
 
 
 
124
  description = """Upload a biomedical image and enter prompts (separated by commas) to detect specific features.
125
 
126
  The model understands these prompts:
 
24
  from utilities.constants import BIOMED_CLASSES
25
  from inference_utils.inference import interactive_infer_image
26
 
27
+ # If True, then mock init_model() and predict() functions will be used.
28
+ DEV_MODE = True
29
 
30
  gr.set_static_paths(["assets"])
31
 
 
78
  demo.launch(server_name="0.0.0.0", server_port=7860)
79
 
80
 
81
+ def init_model_prod():
82
  # Download model
83
  model_file = hf_hub_download(
84
  repo_id="microsoft/BiomedParse",
 
100
  return model
101
 
102
 
103
+ def init_model_dev():
104
+ return None
105
+
106
+
107
+ def predict_prod(image: gr.Image, prompts: str):
108
  if not prompts:
109
  return None
110
 
 
127
  return pred_overlay
128
 
129
 
130
+ def predict_dev(image: gr.Image, prompts: str):
131
+ return image
132
+
133
+
134
+ if DEV_MODE:
135
+ init_model = init_model_dev
136
+ predict = predict_dev
137
+ else:
138
+ init_model = init_model_prod
139
+ predict = predict_prod
140
+
141
  description = """Upload a biomedical image and enter prompts (separated by commas) to detect specific features.
142
 
143
  The model understands these prompts: