kernel-luso-comfort commited on
Commit
f50a656
Β·
1 Parent(s): 99b73a0

Rename init_predict_mock.py to model_mock.py and update main.py to use the Model class for predictions

Browse files
inference_utils/{init_predict.py β†’ model.py} RENAMED
File without changes
inference_utils/{init_predict_mock.py β†’ model_mock.py} RENAMED
@@ -23,7 +23,7 @@ class Model:
23
  pass
24
 
25
  def predict(
26
- image: Image, modality_type: str, targets: list[str]
27
  ) -> Tuple[Image, str]:
28
  # Randomly split targets into found and not found
29
  targets_found = random.sample(targets, k=len(targets) // 2)
 
23
  pass
24
 
25
  def predict(
26
+ self, image: Image, modality_type: str, targets: list[str]
27
  ) -> Tuple[Image, str]:
28
  # Randomly split targets into found and not found
29
  targets_found = random.sample(targets, k=len(targets) // 2)
main.py CHANGED
@@ -23,9 +23,9 @@ DEV_MODE = True if os.getenv("DEV_MODE") else False
23
  import gradio as gr
24
 
25
  if DEV_MODE:
26
- from inference_utils.init_predict_mock import init_model, predict
27
  else:
28
- from inference_utils.init_predict import init_model, predict
29
 
30
 
31
  gr.set_static_paths(["assets"])
@@ -93,8 +93,8 @@ DEFAULT_MODALITY = "CT-Abdomen"
93
 
94
 
95
  def run():
96
- global model
97
- model = init_model()
98
 
99
  with gr.Blocks() as demo:
100
  gr.Markdown("# BiomedParse Demo")
@@ -126,7 +126,7 @@ def run():
126
 
127
  submit_btn = gr.Button("Submit")
128
  submit_btn.click(
129
- fn=predict,
130
  inputs=[input_image, input_modality_type, input_targets],
131
  outputs=[output_image, output_targets_not_found],
132
  )
@@ -134,8 +134,8 @@ def run():
134
  gr.Examples(
135
  examples=examples,
136
  inputs=[input_image, input_modality_type, input_targets],
137
- outputs=output_image,
138
- fn=predict,
139
  cache_examples=False,
140
  )
141
 
 
23
  import gradio as gr
24
 
25
  if DEV_MODE:
26
+ from inference_utils.model_mock import Model
27
  else:
28
+ from inference_utils.model import Model
29
 
30
 
31
  gr.set_static_paths(["assets"])
 
93
 
94
 
95
  def run():
96
+ model = Model()
97
+ model.init()
98
 
99
  with gr.Blocks() as demo:
100
  gr.Markdown("# BiomedParse Demo")
 
126
 
127
  submit_btn = gr.Button("Submit")
128
  submit_btn.click(
129
+ fn=model.predict,
130
  inputs=[input_image, input_modality_type, input_targets],
131
  outputs=[output_image, output_targets_not_found],
132
  )
 
134
  gr.Examples(
135
  examples=examples,
136
  inputs=[input_image, input_modality_type, input_targets],
137
+ outputs=[output_image, output_targets_not_found],
138
+ fn=model.predict,
139
  cache_examples=False,
140
  )
141