# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os # If True, then mock init_model() and predict() functions will be used. DEV_MODE = True if os.getenv("DEV_MODE") else False import gradio as gr if DEV_MODE: from inference_utils.init_predict_mock import init_model, predict else: from inference_utils.init_predict import init_model, predict gr.set_static_paths(["assets"]) def run(): global model model = init_model() demo = gr.Interface( fn=predict, inputs=[ gr.Image(type="pil", label="Input Image"), gr.Textbox( label="Prompts", placeholder="Enter prompts separated by commas (e.g., neoplastic cells, inflammatory cells)", ), ], outputs=gr.Image(type="pil", label="Prediction"), title="BiomedParse Demo", description=description, allow_flagging="never", examples=[ ["examples/144DME_as_F.jpeg", "edema"], ["examples/C3_EndoCV2021_00462.jpg", "polyp"], ["examples/CT-abdomen.png", "liver, pancreas, spleen"], ["examples/covid_1585.png", "left lung"], ["examples/covid_1585.png", "right lung"], ["examples/covid_1585.png", "COVID-19 infection"], ["examples/ISIC_0015551.jpg", "lesion"], ["examples/LIDC-IDRI-0140_143_280_CT_lung.png", "lung nodule"], ["examples/LIDC-IDRI-0140_143_280_CT_lung.png", "COVID-19 infection"], [ "examples/Part_1_516_pathology_breast.png", "connective tissue cells", ], [ "examples/Part_1_516_pathology_breast.png", "neoplastic cells", ], [ "examples/Part_1_516_pathology_breast.png", "neoplastic cells, inflammatory cells", ], ["examples/T0011.jpg", "optic disc"], ["examples/T0011.jpg", "optic cup"], ["examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png", "glioma"], ], ) return demo description = """Upload a biomedical image and enter prompts (separated by commas) to detect specific features. The model understands these prompts: ![gpt4_ontology_hierarchy.png](file/assets/gpt4_ontology_hierarchy.png) Above figure is from the [BiomedParse paper](https://arxiv.org/abs/2405.12971). The model understands these types of biomedical images: - [Computed Tomography (CT)](https://en.wikipedia.org/wiki/Computed_tomography) - [Magnetic Resonance Imaging (MRI)](https://en.wikipedia.org/wiki/Magnetic_resonance_imaging) - [X-ray](https://en.wikipedia.org/wiki/X-ray) - [Medical Ultrasound](https://en.wikipedia.org/wiki/Medical_ultrasound) - [Pathology](https://en.wikipedia.org/wiki/Pathology) - [Fundus (eye)](https://en.wikipedia.org/wiki/Fundus_(eye)) - [Dermoscopy](https://en.wikipedia.org/wiki/Dermoscopy) - [Endoscopy](https://en.wikipedia.org/wiki/Endoscopy) - [Optical Coherence Tomography (OCT)](https://en.wikipedia.org/wiki/Optical_coherence_tomography) This Space is based on the [BiomedParse model](https://microsoft.github.io/BiomedParse/). """ demo = run() if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)