from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import gradio as gr import torch model_id = "tiiuae/falcon-rw-1b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1, ) def chat(user_input, history): prompt = "" for user, bot in history: prompt += f"User: {user}\nBot: {bot}\n" prompt += f"User: {user_input}\nBot:" result = pipe(prompt, max_new_tokens=64, do_sample=False) output = result[0]["generated_text"] reply = output.split("Bot:")[-1].strip() history.append((user_input, reply)) return history, history gr.ChatInterface( fn=chat, chatbot=gr.Chatbot(), title="Tiny Falcon Chatbot", theme="default", ).launch()