Create visualization.py
Browse files- utils/visualization.py +153 -0
utils/visualization.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import plotly.graph_objects as go
|
| 2 |
+
import plotly.express as px
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
class GraphVisualizer:
|
| 8 |
+
"""Graph visualization utilities"""
|
| 9 |
+
|
| 10 |
+
@staticmethod
|
| 11 |
+
def create_graph_plot(data, max_nodes=500):
|
| 12 |
+
"""Create interactive graph visualization"""
|
| 13 |
+
try:
|
| 14 |
+
# Limit nodes for performance
|
| 15 |
+
num_nodes = min(data.num_nodes, max_nodes)
|
| 16 |
+
|
| 17 |
+
# Create NetworkX graph
|
| 18 |
+
G = nx.Graph()
|
| 19 |
+
edge_list = data.edge_index.t().cpu().numpy()
|
| 20 |
+
|
| 21 |
+
# Filter edges to include only first max_nodes
|
| 22 |
+
edge_list = edge_list[
|
| 23 |
+
(edge_list[:, 0] < num_nodes) & (edge_list[:, 1] < num_nodes)
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
if len(edge_list) > 0:
|
| 27 |
+
G.add_edges_from(edge_list)
|
| 28 |
+
|
| 29 |
+
# Add isolated nodes
|
| 30 |
+
G.add_nodes_from(range(num_nodes))
|
| 31 |
+
|
| 32 |
+
# Layout
|
| 33 |
+
if len(G.nodes()) > 100:
|
| 34 |
+
pos = nx.spring_layout(G, k=0.5, iterations=20)
|
| 35 |
+
else:
|
| 36 |
+
pos = nx.spring_layout(G, k=1, iterations=50)
|
| 37 |
+
|
| 38 |
+
# Node colors
|
| 39 |
+
if hasattr(data, 'y') and data.y is not None:
|
| 40 |
+
node_colors = data.y.cpu().numpy()[:num_nodes]
|
| 41 |
+
else:
|
| 42 |
+
node_colors = [0] * num_nodes
|
| 43 |
+
|
| 44 |
+
# Create edge traces
|
| 45 |
+
edge_x, edge_y = [], []
|
| 46 |
+
for edge in G.edges():
|
| 47 |
+
if edge[0] in pos and edge[1] in pos:
|
| 48 |
+
x0, y0 = pos[edge[0]]
|
| 49 |
+
x1, y1 = pos[edge[1]]
|
| 50 |
+
edge_x.extend([x0, x1, None])
|
| 51 |
+
edge_y.extend([y0, y1, None])
|
| 52 |
+
|
| 53 |
+
# Create node traces
|
| 54 |
+
node_x = [pos[node][0] for node in G.nodes() if node in pos]
|
| 55 |
+
node_y = [pos[node][1] for node in G.nodes() if node in pos]
|
| 56 |
+
|
| 57 |
+
fig = go.Figure()
|
| 58 |
+
|
| 59 |
+
# Add edges
|
| 60 |
+
if edge_x:
|
| 61 |
+
fig.add_trace(go.Scatter(
|
| 62 |
+
x=edge_x, y=edge_y,
|
| 63 |
+
line=dict(width=0.5, color='#888'),
|
| 64 |
+
hoverinfo='none',
|
| 65 |
+
mode='lines',
|
| 66 |
+
name='Edges'
|
| 67 |
+
))
|
| 68 |
+
|
| 69 |
+
# Add nodes
|
| 70 |
+
fig.add_trace(go.Scatter(
|
| 71 |
+
x=node_x, y=node_y,
|
| 72 |
+
mode='markers',
|
| 73 |
+
hoverinfo='text',
|
| 74 |
+
text=[f'Node {i}' for i in range(len(node_x))],
|
| 75 |
+
marker=dict(
|
| 76 |
+
size=8,
|
| 77 |
+
color=node_colors[:len(node_x)],
|
| 78 |
+
colorscale='Viridis',
|
| 79 |
+
line=dict(width=1)
|
| 80 |
+
),
|
| 81 |
+
name='Nodes'
|
| 82 |
+
))
|
| 83 |
+
|
| 84 |
+
fig.update_layout(
|
| 85 |
+
title=f'Graph Visualization ({num_nodes} nodes)',
|
| 86 |
+
showlegend=False,
|
| 87 |
+
hovermode='closest',
|
| 88 |
+
margin=dict(b=20, l=5, r=5, t=40),
|
| 89 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 90 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 91 |
+
plot_bgcolor='white'
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
return fig
|
| 95 |
+
|
| 96 |
+
except Exception as e:
|
| 97 |
+
# Return error plot
|
| 98 |
+
fig = go.Figure()
|
| 99 |
+
fig.add_annotation(
|
| 100 |
+
text=f"Visualization error: {str(e)}",
|
| 101 |
+
x=0.5, y=0.5,
|
| 102 |
+
xref="paper", yref="paper",
|
| 103 |
+
showarrow=False
|
| 104 |
+
)
|
| 105 |
+
return fig
|
| 106 |
+
|
| 107 |
+
@staticmethod
|
| 108 |
+
def create_metrics_plot(metrics):
|
| 109 |
+
"""Create metrics visualization"""
|
| 110 |
+
try:
|
| 111 |
+
metric_names = []
|
| 112 |
+
metric_values = []
|
| 113 |
+
|
| 114 |
+
for key, value in metrics.items():
|
| 115 |
+
if isinstance(value, (int, float)) and key != 'error':
|
| 116 |
+
metric_names.append(key.replace('_', ' ').title())
|
| 117 |
+
metric_values.append(value)
|
| 118 |
+
|
| 119 |
+
if metric_names:
|
| 120 |
+
fig = go.Figure(data=[
|
| 121 |
+
go.Bar(
|
| 122 |
+
x=metric_names,
|
| 123 |
+
y=metric_values,
|
| 124 |
+
marker_color='lightblue'
|
| 125 |
+
)
|
| 126 |
+
])
|
| 127 |
+
|
| 128 |
+
fig.update_layout(
|
| 129 |
+
title='Model Performance Metrics',
|
| 130 |
+
xaxis_title='Metric',
|
| 131 |
+
yaxis_title='Value',
|
| 132 |
+
yaxis=dict(range=[0, 1])
|
| 133 |
+
)
|
| 134 |
+
else:
|
| 135 |
+
fig = go.Figure()
|
| 136 |
+
fig.add_annotation(
|
| 137 |
+
text="No metrics to display",
|
| 138 |
+
x=0.5, y=0.5,
|
| 139 |
+
xref="paper", yref="paper",
|
| 140 |
+
showarrow=False
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
return fig
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
fig = go.Figure()
|
| 147 |
+
fig.add_annotation(
|
| 148 |
+
text=f"Metrics plot error: {str(e)}",
|
| 149 |
+
x=0.5, y=0.5,
|
| 150 |
+
xref="paper", yref="paper",
|
| 151 |
+
showarrow=False
|
| 152 |
+
)
|
| 153 |
+
return fig
|