Update benchmark.py
Browse files- benchmark.py +424 -191
benchmark.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
Benchmarking, metrics, and proof generation for Enhanced SPG.
|
| 3 |
Supports LongBench, NIAH, RULER, SCBench benchmarks.
|
| 4 |
MEASURED VALUES ONLY - no estimations. FAIL FAST on errors.
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import torch
|
|
@@ -234,6 +235,113 @@ class BenchmarkMetrics:
|
|
| 234 |
|
| 235 |
return (0.0, 0.0)
|
| 236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
def create_niah_haystack(context_length: int, needle: str, depth_percent: float) -> str:
|
| 238 |
"""Create Needle-in-a-Haystack test context - NO HARDCODING."""
|
| 239 |
# Generate haystack text
|
|
@@ -255,8 +363,9 @@ def create_niah_haystack(context_length: int, needle: str, depth_percent: float)
|
|
| 255 |
|
| 256 |
return haystack_with_needle
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
|
|
|
| 260 |
context = create_niah_haystack(
|
| 261 |
config.prefill_length,
|
| 262 |
config.niah_needle,
|
|
@@ -267,46 +376,32 @@ def evaluate_niah(model, tokenizer, config: CompressionConfig, cache_manager: Op
|
|
| 267 |
|
| 268 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=config.prefill_length)
|
| 269 |
input_ids = inputs.input_ids.to(model.device)
|
|
|
|
| 270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
with torch.inference_mode():
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
if hasattr(DynamicCache, 'from_legacy_cache'):
|
| 290 |
-
past_key_values = DynamicCache.from_legacy_cache(tuple(reconstructed_kv))
|
| 291 |
-
else:
|
| 292 |
-
past_key_values = tuple(reconstructed_kv)
|
| 293 |
-
|
| 294 |
-
# Generate with compressed cache
|
| 295 |
-
output = model.generate(
|
| 296 |
-
input_ids,
|
| 297 |
-
past_key_values=past_key_values,
|
| 298 |
-
max_new_tokens=20,
|
| 299 |
-
temperature=0.0,
|
| 300 |
-
do_sample=False
|
| 301 |
-
)
|
| 302 |
-
else:
|
| 303 |
-
# Generate without compression
|
| 304 |
-
output = model.generate(
|
| 305 |
-
input_ids,
|
| 306 |
-
max_new_tokens=20,
|
| 307 |
-
temperature=0.0,
|
| 308 |
-
do_sample=False
|
| 309 |
-
)
|
| 310 |
|
| 311 |
generated_text = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 312 |
|
|
@@ -314,59 +409,20 @@ def evaluate_niah(model, tokenizer, config: CompressionConfig, cache_manager: Op
|
|
| 314 |
accuracy = 1.0 if config.niah_needle.split()[-1] in generated_text else 0.0
|
| 315 |
|
| 316 |
logger.info(f"NIAH accuracy: {accuracy}, Generated: {generated_text[:50]}")
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
-
def evaluate_longbench_task(model, tokenizer, config: CompressionConfig,
|
| 320 |
-
task: str, cache_manager: Optional[QuantizedKVCache] = None) -> Dict[str, float]:
|
| 321 |
-
"""Evaluate LongBench task - MEASURED METRICS ONLY."""
|
| 322 |
-
try:
|
| 323 |
-
dataset = load_dataset("THUDM/LongBench", task, split="test")
|
| 324 |
-
|
| 325 |
-
# Sample evaluation examples
|
| 326 |
-
n_samples = min(config.eval_samples, len(dataset))
|
| 327 |
-
samples = dataset.select(range(n_samples))
|
| 328 |
-
|
| 329 |
-
scores = []
|
| 330 |
-
for sample in samples:
|
| 331 |
-
context = sample.get("context", "")
|
| 332 |
-
question = sample.get("input", sample.get("question", ""))
|
| 333 |
-
answer = sample.get("answers", [sample.get("answer", "")])
|
| 334 |
-
|
| 335 |
-
if isinstance(answer, list) and answer:
|
| 336 |
-
answer = answer[0]
|
| 337 |
-
|
| 338 |
-
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
|
| 339 |
-
|
| 340 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True,
|
| 341 |
-
max_length=config.prefill_length)
|
| 342 |
-
input_ids = inputs.input_ids.to(model.device)
|
| 343 |
-
|
| 344 |
-
with torch.inference_mode():
|
| 345 |
-
output = model.generate(
|
| 346 |
-
input_ids,
|
| 347 |
-
max_new_tokens=50,
|
| 348 |
-
temperature=0.0,
|
| 349 |
-
do_sample=False
|
| 350 |
-
)
|
| 351 |
-
|
| 352 |
-
generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 353 |
-
|
| 354 |
-
# Simple accuracy metric - check if answer appears in generation
|
| 355 |
-
score = 1.0 if str(answer).lower() in generated.lower() else 0.0
|
| 356 |
-
scores.append(score)
|
| 357 |
-
|
| 358 |
-
return {
|
| 359 |
-
"accuracy": float(np.mean(scores)),
|
| 360 |
-
"n_samples": n_samples
|
| 361 |
-
}
|
| 362 |
-
|
| 363 |
-
except Exception as e:
|
| 364 |
-
logger.error(f"Error evaluating LongBench task {task}: {e}")
|
| 365 |
-
return {"accuracy": 0.0, "n_samples": 0}
|
| 366 |
|
| 367 |
-
def evaluate_ruler(model, tokenizer, config: CompressionConfig,
|
| 368 |
-
|
| 369 |
-
"""Evaluate RULER benchmark - MEASURED ONLY."""
|
| 370 |
# Create synthetic RULER-like task
|
| 371 |
seq_len = min(config.ruler_max_seq_length, config.prefill_length)
|
| 372 |
|
|
@@ -383,14 +439,31 @@ def evaluate_ruler(model, tokenizer, config: CompressionConfig,
|
|
| 383 |
|
| 384 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=seq_len)
|
| 385 |
input_ids = inputs.input_ids.to(model.device)
|
|
|
|
| 386 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
with torch.inference_mode():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
output = model.generate(
|
| 389 |
input_ids,
|
|
|
|
| 390 |
max_new_tokens=10,
|
| 391 |
temperature=0.0,
|
| 392 |
-
do_sample=False
|
|
|
|
| 393 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
|
| 395 |
generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 396 |
|
|
@@ -399,11 +472,20 @@ def evaluate_ruler(model, tokenizer, config: CompressionConfig,
|
|
| 399 |
exact_match = 1.0 if expected in generated else 0.0
|
| 400 |
|
| 401 |
logger.info(f"RULER exact match: {exact_match}, Generated: {generated[:50]}")
|
| 402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
-
def evaluate_scbench(model, tokenizer, config: CompressionConfig,
|
| 405 |
-
|
| 406 |
-
"""Evaluate SCBench multi-turn conversation - MEASURED ONLY."""
|
| 407 |
# Create multi-turn conversation
|
| 408 |
conversation = []
|
| 409 |
facts = {}
|
|
@@ -428,14 +510,31 @@ def evaluate_scbench(model, tokenizer, config: CompressionConfig,
|
|
| 428 |
inputs = tokenizer(full_conversation, return_tensors="pt", truncation=True,
|
| 429 |
max_length=config.prefill_length)
|
| 430 |
input_ids = inputs.input_ids.to(model.device)
|
|
|
|
| 431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
with torch.inference_mode():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
output = model.generate(
|
| 434 |
input_ids,
|
|
|
|
| 435 |
max_new_tokens=20,
|
| 436 |
temperature=0.0,
|
| 437 |
-
do_sample=False
|
|
|
|
| 438 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 441 |
|
|
@@ -444,7 +543,107 @@ def evaluate_scbench(model, tokenizer, config: CompressionConfig,
|
|
| 444 |
accuracy = 1.0 if expected_value in generated else 0.0
|
| 445 |
|
| 446 |
logger.info(f"SCBench accuracy: {accuracy}, Generated: {generated[:50]}")
|
| 447 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
|
| 449 |
def load_model_and_tokenizer(model_name: str, config: CompressionConfig):
|
| 450 |
"""Load model and tokenizer with proper configuration - NO HARDCODING."""
|
|
@@ -496,11 +695,12 @@ def load_model_and_tokenizer(model_name: str, config: CompressionConfig):
|
|
| 496 |
|
| 497 |
return model, tokenizer
|
| 498 |
|
|
|
|
| 499 |
def load_real_dataset_samples(config: CompressionConfig, tokenizer) -> List[str]:
|
| 500 |
"""Load dataset samples based on benchmark type - NO HARDCODING."""
|
| 501 |
logger.info(f"Loading samples for benchmark: {config.benchmark_type}")
|
| 502 |
|
| 503 |
-
if config.benchmark_type == "
|
| 504 |
# Original WikiText loading
|
| 505 |
texts = []
|
| 506 |
min_tokens = config.prefill_length + config.generation_length
|
|
@@ -568,8 +768,9 @@ def load_real_dataset_samples(config: CompressionConfig, tokenizer) -> List[str]
|
|
| 568 |
logger.info(f"Loaded {len(texts)} text samples")
|
| 569 |
return texts
|
| 570 |
|
|
|
|
| 571 |
def run_research_benchmark(model_name: str, config: CompressionConfig, dataset_texts: Optional[List[str]] = None) -> Tuple[BenchmarkMetrics, Dict, List[Dict], List[Dict]]:
|
| 572 |
-
"""Research-grade benchmark with
|
| 573 |
logger.info(f"Starting benchmark: {model_name} with {config.compression_type.value}")
|
| 574 |
logger.info(f"Benchmark type: {config.benchmark_type}")
|
| 575 |
logger.info(f"Config hash: {config.get_hash()}")
|
|
@@ -611,57 +812,117 @@ def run_research_benchmark(model_name: str, config: CompressionConfig, dataset_t
|
|
| 611 |
|
| 612 |
metrics = BenchmarkMetrics()
|
| 613 |
|
| 614 |
-
# Run benchmark-specific evaluation
|
| 615 |
if config.benchmark_type == "niah":
|
| 616 |
-
# NIAH evaluation
|
| 617 |
for depth in BENCHMARK_CONFIGS["niah"]["depths"]:
|
| 618 |
config.niah_depth_percent = depth
|
| 619 |
for idx in range(min(config.eval_samples, 10)):
|
| 620 |
cache_manager = QuantizedKVCache(config)
|
| 621 |
cache_manager.n_layers = n_layers
|
| 622 |
|
| 623 |
-
|
| 624 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 625 |
|
| 626 |
-
|
| 627 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
|
| 629 |
elif config.benchmark_type == "ruler":
|
| 630 |
-
# RULER evaluation
|
| 631 |
for idx in range(config.eval_samples):
|
| 632 |
cache_manager = QuantizedKVCache(config)
|
| 633 |
cache_manager.n_layers = n_layers
|
| 634 |
|
| 635 |
-
|
| 636 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 637 |
|
| 638 |
-
|
| 639 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
|
| 641 |
elif config.benchmark_type == "scbench":
|
| 642 |
-
# SCBench evaluation
|
| 643 |
for idx in range(config.eval_samples):
|
| 644 |
cache_manager = QuantizedKVCache(config)
|
| 645 |
cache_manager.n_layers = n_layers
|
| 646 |
|
| 647 |
-
|
| 648 |
-
metrics.scbench_turn_accuracy.append(accuracy)
|
| 649 |
|
| 650 |
-
|
| 651 |
-
metrics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
|
| 653 |
elif config.benchmark_type == "longbench":
|
| 654 |
-
# LongBench evaluation
|
| 655 |
if config.benchmark_subset:
|
| 656 |
cache_manager = QuantizedKVCache(config)
|
| 657 |
cache_manager.n_layers = n_layers
|
| 658 |
|
| 659 |
-
|
| 660 |
config.benchmark_subset, cache_manager)
|
| 661 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 662 |
|
| 663 |
else:
|
| 664 |
-
# Standard perplexity evaluation
|
| 665 |
for idx in range(config.eval_samples):
|
| 666 |
logger.info(f"Sample {idx+1}/{config.eval_samples}")
|
| 667 |
|
|
@@ -682,68 +943,27 @@ def run_research_benchmark(model_name: str, config: CompressionConfig, dataset_t
|
|
| 682 |
input_ids = inputs.input_ids.to(device)
|
| 683 |
attention_mask = inputs.attention_mask.to(device)
|
| 684 |
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
# Prefill
|
| 691 |
-
if torch.cuda.is_available():
|
| 692 |
-
torch.cuda.synchronize()
|
| 693 |
-
start_time_sample = time.perf_counter()
|
| 694 |
-
|
| 695 |
-
with torch.inference_mode():
|
| 696 |
-
outputs = model(
|
| 697 |
-
input_ids,
|
| 698 |
-
attention_mask=attention_mask,
|
| 699 |
-
use_cache=True,
|
| 700 |
-
return_dict=True
|
| 701 |
-
)
|
| 702 |
-
past_key_values = outputs.past_key_values
|
| 703 |
-
|
| 704 |
-
if torch.cuda.is_available():
|
| 705 |
-
torch.cuda.synchronize()
|
| 706 |
-
|
| 707 |
-
prefill_time = time.perf_counter() - start_time_sample
|
| 708 |
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
metrics.prefill_times.append(prefill_time)
|
| 714 |
-
|
| 715 |
-
# Compression
|
| 716 |
-
original_cache_size = 0
|
| 717 |
-
if past_key_values:
|
| 718 |
-
kv_tuple = past_key_values.to_legacy_cache() if hasattr(past_key_values, 'to_legacy_cache') else past_key_values
|
| 719 |
-
for layer_idx, (keys, values) in enumerate(kv_tuple):
|
| 720 |
-
original_cache_size += keys.nelement() * keys.element_size()
|
| 721 |
-
original_cache_size += values.nelement() * values.element_size()
|
| 722 |
-
if config.compression_type != CompressionType.NONE:
|
| 723 |
-
cache_manager.compress_and_store(layer_idx, keys, values)
|
| 724 |
-
|
| 725 |
-
if config.compression_type != CompressionType.NONE:
|
| 726 |
-
reconstructed_kv = []
|
| 727 |
-
for layer_idx in range(len(kv_tuple)):
|
| 728 |
-
dec_keys, dec_values = cache_manager.get_decompressed(layer_idx)
|
| 729 |
-
if dec_keys is not None and dec_values is not None:
|
| 730 |
-
reconstructed_kv.append((dec_keys, dec_values))
|
| 731 |
-
|
| 732 |
-
if hasattr(DynamicCache, 'from_legacy_cache'):
|
| 733 |
-
past_key_values = DynamicCache.from_legacy_cache(tuple(reconstructed_kv))
|
| 734 |
-
else:
|
| 735 |
-
past_key_values = tuple(reconstructed_kv)
|
| 736 |
|
| 737 |
-
|
| 738 |
-
|
| 739 |
|
| 740 |
-
|
| 741 |
-
|
|
|
|
| 742 |
|
| 743 |
-
# Generation
|
| 744 |
generated_ids = input_ids.clone()
|
| 745 |
decode_times = []
|
| 746 |
generation_losses = []
|
|
|
|
| 747 |
|
| 748 |
for gen_step in range(config.generation_length):
|
| 749 |
if torch.cuda.is_available():
|
|
@@ -778,11 +998,21 @@ def run_research_benchmark(model_name: str, config: CompressionConfig, dataset_t
|
|
| 778 |
if generation_losses:
|
| 779 |
generation_perplexity = np.exp(np.mean(generation_losses))
|
| 780 |
metrics.generation_perplexities.append(min(generation_perplexity, 1000))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 781 |
|
| 782 |
metrics.calculate_statistics(config)
|
| 783 |
all_metrics.append(metrics)
|
| 784 |
|
| 785 |
-
# Aggregate results
|
| 786 |
final_metrics = BenchmarkMetrics()
|
| 787 |
for m in all_metrics:
|
| 788 |
final_metrics.prefill_times.extend(m.prefill_times)
|
|
@@ -826,15 +1056,18 @@ def run_research_benchmark(model_name: str, config: CompressionConfig, dataset_t
|
|
| 826 |
else:
|
| 827 |
summary['prefill_perplexity'] = final_metrics.prefill_perplexity_mean
|
| 828 |
summary['generation_perplexity'] = final_metrics.generation_perplexity_mean
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
|
|
|
|
|
|
| 835 |
|
| 836 |
return final_metrics, summary, per_sample_records, per_layer_fingerprints
|
| 837 |
|
|
|
|
| 838 |
def export_proof_bundle(bundle_dir: str, config: CompressionConfig,
|
| 839 |
metrics: BenchmarkMetrics, summary: Dict[str, Any],
|
| 840 |
per_sample_records: List[Dict[str, Any]],
|
|
@@ -889,6 +1122,7 @@ def export_proof_bundle(bundle_dir: str, config: CompressionConfig,
|
|
| 889 |
logger.info(f"Proof bundle exported: {zip_path}")
|
| 890 |
return zip_path
|
| 891 |
|
|
|
|
| 892 |
def verify_proof_bundle(bundle_root: str, config: CompressionConfig, proving: ProvingConfig) -> Dict[str, Any]:
|
| 893 |
"""Verify proof bundle - recompute metrics and check tolerances."""
|
| 894 |
try:
|
|
@@ -924,27 +1158,26 @@ def verify_proof_bundle(bundle_root: str, config: CompressionConfig, proving: Pr
|
|
| 924 |
# Verify based on benchmark type
|
| 925 |
if config.benchmark_type == "niah":
|
| 926 |
if "niah_accuracy" in summary:
|
| 927 |
-
recomputed["niah_accuracy"] = mean_of("
|
| 928 |
elif config.benchmark_type == "ruler":
|
| 929 |
if "ruler_exact_match" in summary:
|
| 930 |
-
recomputed["ruler_exact_match"] = mean_of("
|
| 931 |
elif config.benchmark_type == "scbench":
|
| 932 |
if "scbench_accuracy" in summary:
|
| 933 |
-
recomputed["scbench_accuracy"] = mean_of("
|
| 934 |
elif config.benchmark_type == "longbench":
|
| 935 |
if "longbench_accuracy" in summary:
|
| 936 |
-
recomputed["longbench_accuracy"] = mean_of("
|
| 937 |
elif config.benchmark_type == "wikitext":
|
| 938 |
# WikiText benchmark metrics
|
| 939 |
-
recomputed["compression_ratio"] = mean_of("compression_ratio")
|
| 940 |
-
recomputed["kv_cache_memory_mb"] = mean_of("kv_cache_memory_mb")
|
| 941 |
if "prefill_perplexity" in summary:
|
| 942 |
recomputed["prefill_perplexity"] = mean_of("prefill_perplexity")
|
| 943 |
if "generation_perplexity" in summary:
|
| 944 |
recomputed["generation_perplexity"] = mean_of("generation_perplexity")
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
|
|
|
| 948 |
|
| 949 |
for k, v in recomputed.items():
|
| 950 |
s = summary.get(k)
|
|
|
|
| 2 |
Benchmarking, metrics, and proof generation for Enhanced SPG.
|
| 3 |
Supports LongBench, NIAH, RULER, SCBench benchmarks.
|
| 4 |
MEASURED VALUES ONLY - no estimations. FAIL FAST on errors.
|
| 5 |
+
ALL BENCHMARKS USE SAME COMPRESSION PIPELINE AS WIKITEXT.
|
| 6 |
"""
|
| 7 |
|
| 8 |
import torch
|
|
|
|
| 235 |
|
| 236 |
return (0.0, 0.0)
|
| 237 |
|
| 238 |
+
|
| 239 |
+
def apply_compression_pipeline(model, tokenizer, input_ids, attention_mask,
|
| 240 |
+
cache_manager: QuantizedKVCache, config: CompressionConfig,
|
| 241 |
+
measure_memory: bool = True) -> Dict[str, Any]:
|
| 242 |
+
"""
|
| 243 |
+
Unified compression pipeline for ALL benchmarks.
|
| 244 |
+
Returns compressed cache, metrics, and reconstructed KV pairs.
|
| 245 |
+
"""
|
| 246 |
+
device = input_ids.device
|
| 247 |
+
|
| 248 |
+
# Clear GPU cache if requested
|
| 249 |
+
if torch.cuda.is_available() and measure_memory:
|
| 250 |
+
torch.cuda.empty_cache()
|
| 251 |
+
torch.cuda.reset_peak_memory_stats()
|
| 252 |
+
torch.cuda.synchronize()
|
| 253 |
+
|
| 254 |
+
# Measure prefill time
|
| 255 |
+
if torch.cuda.is_available():
|
| 256 |
+
torch.cuda.synchronize()
|
| 257 |
+
start_time = time.perf_counter()
|
| 258 |
+
|
| 259 |
+
# Prefill phase
|
| 260 |
+
with torch.inference_mode():
|
| 261 |
+
outputs = model(
|
| 262 |
+
input_ids,
|
| 263 |
+
attention_mask=attention_mask,
|
| 264 |
+
use_cache=True,
|
| 265 |
+
return_dict=True
|
| 266 |
+
)
|
| 267 |
+
past_key_values = outputs.past_key_values
|
| 268 |
+
logits = outputs.logits
|
| 269 |
+
|
| 270 |
+
if torch.cuda.is_available():
|
| 271 |
+
torch.cuda.synchronize()
|
| 272 |
+
|
| 273 |
+
prefill_time = time.perf_counter() - start_time
|
| 274 |
+
|
| 275 |
+
# Measure peak memory
|
| 276 |
+
prefill_peak_mem = 0
|
| 277 |
+
if torch.cuda.is_available() and measure_memory:
|
| 278 |
+
prefill_peak_mem = _peak_mem_bytes_all_gpus()
|
| 279 |
+
|
| 280 |
+
# Calculate prefill perplexity if we have logits
|
| 281 |
+
prefill_loss = None
|
| 282 |
+
if logits is not None and input_ids.shape[1] > 1:
|
| 283 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 284 |
+
shift_labels = input_ids[..., 1:].contiguous()
|
| 285 |
+
loss = F.cross_entropy(
|
| 286 |
+
shift_logits.view(-1, shift_logits.size(-1)),
|
| 287 |
+
shift_labels.view(-1),
|
| 288 |
+
reduction='mean',
|
| 289 |
+
ignore_index=tokenizer.pad_token_id if tokenizer.pad_token_id is not None else -100
|
| 290 |
+
)
|
| 291 |
+
prefill_loss = loss.item()
|
| 292 |
+
|
| 293 |
+
# Compression phase - same as WikiText
|
| 294 |
+
original_cache_size = 0
|
| 295 |
+
compressed_cache_size = 0
|
| 296 |
+
compression_ratio = 1.0
|
| 297 |
+
|
| 298 |
+
if past_key_values:
|
| 299 |
+
# Convert to legacy format for processing
|
| 300 |
+
kv_tuple = past_key_values.to_legacy_cache() if hasattr(past_key_values, 'to_legacy_cache') else past_key_values
|
| 301 |
+
|
| 302 |
+
# Calculate original size
|
| 303 |
+
for layer_idx, (keys, values) in enumerate(kv_tuple):
|
| 304 |
+
original_cache_size += keys.nelement() * keys.element_size()
|
| 305 |
+
original_cache_size += values.nelement() * values.element_size()
|
| 306 |
+
|
| 307 |
+
# Apply compression if enabled
|
| 308 |
+
if config.compression_type != CompressionType.NONE:
|
| 309 |
+
cache_manager.compress_and_store(layer_idx, keys, values)
|
| 310 |
+
|
| 311 |
+
# Reconstruct compressed cache
|
| 312 |
+
if config.compression_type != CompressionType.NONE:
|
| 313 |
+
reconstructed_kv = []
|
| 314 |
+
for layer_idx in range(len(kv_tuple)):
|
| 315 |
+
dec_keys, dec_values = cache_manager.get_decompressed(layer_idx)
|
| 316 |
+
if dec_keys is not None and dec_values is not None:
|
| 317 |
+
reconstructed_kv.append((dec_keys, dec_values))
|
| 318 |
+
|
| 319 |
+
# Convert back to DynamicCache format
|
| 320 |
+
if hasattr(DynamicCache, 'from_legacy_cache'):
|
| 321 |
+
past_key_values = DynamicCache.from_legacy_cache(tuple(reconstructed_kv))
|
| 322 |
+
else:
|
| 323 |
+
past_key_values = tuple(reconstructed_kv)
|
| 324 |
+
|
| 325 |
+
# Measure compressed size
|
| 326 |
+
compressed_cache_size = cache_manager.get_memory_footprint()
|
| 327 |
+
else:
|
| 328 |
+
compressed_cache_size = original_cache_size
|
| 329 |
+
|
| 330 |
+
# Calculate compression ratio
|
| 331 |
+
compression_ratio = original_cache_size / compressed_cache_size if compressed_cache_size > 0 else 1.0
|
| 332 |
+
|
| 333 |
+
return {
|
| 334 |
+
'past_key_values': past_key_values,
|
| 335 |
+
'prefill_time': prefill_time,
|
| 336 |
+
'prefill_peak_mem': prefill_peak_mem,
|
| 337 |
+
'prefill_loss': prefill_loss,
|
| 338 |
+
'original_cache_size': original_cache_size,
|
| 339 |
+
'compressed_cache_size': compressed_cache_size,
|
| 340 |
+
'compression_ratio': compression_ratio,
|
| 341 |
+
'logits': logits
|
| 342 |
+
}
|
| 343 |
+
|
| 344 |
+
|
| 345 |
def create_niah_haystack(context_length: int, needle: str, depth_percent: float) -> str:
|
| 346 |
"""Create Needle-in-a-Haystack test context - NO HARDCODING."""
|
| 347 |
# Generate haystack text
|
|
|
|
| 363 |
|
| 364 |
return haystack_with_needle
|
| 365 |
|
| 366 |
+
|
| 367 |
+
def evaluate_niah(model, tokenizer, config: CompressionConfig, cache_manager: Optional[QuantizedKVCache] = None) -> Dict[str, Any]:
|
| 368 |
+
"""Evaluate NIAH with SAME compression pipeline as WikiText."""
|
| 369 |
context = create_niah_haystack(
|
| 370 |
config.prefill_length,
|
| 371 |
config.niah_needle,
|
|
|
|
| 376 |
|
| 377 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=config.prefill_length)
|
| 378 |
input_ids = inputs.input_ids.to(model.device)
|
| 379 |
+
attention_mask = inputs.attention_mask.to(model.device)
|
| 380 |
|
| 381 |
+
# Apply SAME compression pipeline as WikiText
|
| 382 |
+
compression_result = apply_compression_pipeline(
|
| 383 |
+
model, tokenizer, input_ids, attention_mask, cache_manager, config
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
# Generate with compressed cache
|
| 387 |
with torch.inference_mode():
|
| 388 |
+
# Measure generation time
|
| 389 |
+
if torch.cuda.is_available():
|
| 390 |
+
torch.cuda.synchronize()
|
| 391 |
+
gen_start = time.perf_counter()
|
| 392 |
+
|
| 393 |
+
output = model.generate(
|
| 394 |
+
input_ids,
|
| 395 |
+
past_key_values=compression_result['past_key_values'],
|
| 396 |
+
max_new_tokens=20,
|
| 397 |
+
temperature=0.0,
|
| 398 |
+
do_sample=False,
|
| 399 |
+
attention_mask=attention_mask
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
if torch.cuda.is_available():
|
| 403 |
+
torch.cuda.synchronize()
|
| 404 |
+
gen_time = time.perf_counter() - gen_start
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
generated_text = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 407 |
|
|
|
|
| 409 |
accuracy = 1.0 if config.niah_needle.split()[-1] in generated_text else 0.0
|
| 410 |
|
| 411 |
logger.info(f"NIAH accuracy: {accuracy}, Generated: {generated_text[:50]}")
|
| 412 |
+
logger.info(f"NIAH compression ratio: {compression_result['compression_ratio']:.1f}x")
|
| 413 |
+
|
| 414 |
+
return {
|
| 415 |
+
'accuracy': accuracy,
|
| 416 |
+
'compression_ratio': compression_result['compression_ratio'],
|
| 417 |
+
'kv_cache_memory_mb': compression_result['compressed_cache_size'] / (1024 * 1024),
|
| 418 |
+
'prefill_time': compression_result['prefill_time'],
|
| 419 |
+
'generation_time': gen_time,
|
| 420 |
+
'prefill_peak_mem': compression_result['prefill_peak_mem']
|
| 421 |
+
}
|
| 422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
|
| 424 |
+
def evaluate_ruler(model, tokenizer, config: CompressionConfig, cache_manager: Optional[QuantizedKVCache] = None) -> Dict[str, Any]:
|
| 425 |
+
"""Evaluate RULER with SAME compression pipeline as WikiText."""
|
|
|
|
| 426 |
# Create synthetic RULER-like task
|
| 427 |
seq_len = min(config.ruler_max_seq_length, config.prefill_length)
|
| 428 |
|
|
|
|
| 439 |
|
| 440 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=seq_len)
|
| 441 |
input_ids = inputs.input_ids.to(model.device)
|
| 442 |
+
attention_mask = inputs.attention_mask.to(model.device)
|
| 443 |
|
| 444 |
+
# Apply SAME compression pipeline as WikiText
|
| 445 |
+
compression_result = apply_compression_pipeline(
|
| 446 |
+
model, tokenizer, input_ids, attention_mask, cache_manager, config
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
# Generate with compressed cache
|
| 450 |
with torch.inference_mode():
|
| 451 |
+
if torch.cuda.is_available():
|
| 452 |
+
torch.cuda.synchronize()
|
| 453 |
+
gen_start = time.perf_counter()
|
| 454 |
+
|
| 455 |
output = model.generate(
|
| 456 |
input_ids,
|
| 457 |
+
past_key_values=compression_result['past_key_values'],
|
| 458 |
max_new_tokens=10,
|
| 459 |
temperature=0.0,
|
| 460 |
+
do_sample=False,
|
| 461 |
+
attention_mask=attention_mask
|
| 462 |
)
|
| 463 |
+
|
| 464 |
+
if torch.cuda.is_available():
|
| 465 |
+
torch.cuda.synchronize()
|
| 466 |
+
gen_time = time.perf_counter() - gen_start
|
| 467 |
|
| 468 |
generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 469 |
|
|
|
|
| 472 |
exact_match = 1.0 if expected in generated else 0.0
|
| 473 |
|
| 474 |
logger.info(f"RULER exact match: {exact_match}, Generated: {generated[:50]}")
|
| 475 |
+
logger.info(f"RULER compression ratio: {compression_result['compression_ratio']:.1f}x")
|
| 476 |
+
|
| 477 |
+
return {
|
| 478 |
+
'exact_match': exact_match,
|
| 479 |
+
'compression_ratio': compression_result['compression_ratio'],
|
| 480 |
+
'kv_cache_memory_mb': compression_result['compressed_cache_size'] / (1024 * 1024),
|
| 481 |
+
'prefill_time': compression_result['prefill_time'],
|
| 482 |
+
'generation_time': gen_time,
|
| 483 |
+
'prefill_peak_mem': compression_result['prefill_peak_mem']
|
| 484 |
+
}
|
| 485 |
+
|
| 486 |
|
| 487 |
+
def evaluate_scbench(model, tokenizer, config: CompressionConfig, cache_manager: Optional[QuantizedKVCache] = None) -> Dict[str, Any]:
|
| 488 |
+
"""Evaluate SCBench with SAME compression pipeline as WikiText."""
|
|
|
|
| 489 |
# Create multi-turn conversation
|
| 490 |
conversation = []
|
| 491 |
facts = {}
|
|
|
|
| 510 |
inputs = tokenizer(full_conversation, return_tensors="pt", truncation=True,
|
| 511 |
max_length=config.prefill_length)
|
| 512 |
input_ids = inputs.input_ids.to(model.device)
|
| 513 |
+
attention_mask = inputs.attention_mask.to(model.device)
|
| 514 |
|
| 515 |
+
# Apply SAME compression pipeline as WikiText
|
| 516 |
+
compression_result = apply_compression_pipeline(
|
| 517 |
+
model, tokenizer, input_ids, attention_mask, cache_manager, config
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
# Generate with compressed cache
|
| 521 |
with torch.inference_mode():
|
| 522 |
+
if torch.cuda.is_available():
|
| 523 |
+
torch.cuda.synchronize()
|
| 524 |
+
gen_start = time.perf_counter()
|
| 525 |
+
|
| 526 |
output = model.generate(
|
| 527 |
input_ids,
|
| 528 |
+
past_key_values=compression_result['past_key_values'],
|
| 529 |
max_new_tokens=20,
|
| 530 |
temperature=0.0,
|
| 531 |
+
do_sample=False,
|
| 532 |
+
attention_mask=attention_mask
|
| 533 |
)
|
| 534 |
+
|
| 535 |
+
if torch.cuda.is_available():
|
| 536 |
+
torch.cuda.synchronize()
|
| 537 |
+
gen_time = time.perf_counter() - gen_start
|
| 538 |
|
| 539 |
generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 540 |
|
|
|
|
| 543 |
accuracy = 1.0 if expected_value in generated else 0.0
|
| 544 |
|
| 545 |
logger.info(f"SCBench accuracy: {accuracy}, Generated: {generated[:50]}")
|
| 546 |
+
logger.info(f"SCBench compression ratio: {compression_result['compression_ratio']:.1f}x")
|
| 547 |
+
|
| 548 |
+
return {
|
| 549 |
+
'accuracy': accuracy,
|
| 550 |
+
'compression_ratio': compression_result['compression_ratio'],
|
| 551 |
+
'kv_cache_memory_mb': compression_result['compressed_cache_size'] / (1024 * 1024),
|
| 552 |
+
'prefill_time': compression_result['prefill_time'],
|
| 553 |
+
'generation_time': gen_time,
|
| 554 |
+
'prefill_peak_mem': compression_result['prefill_peak_mem']
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
def evaluate_longbench_task(model, tokenizer, config: CompressionConfig,
|
| 559 |
+
task: str, cache_manager: Optional[QuantizedKVCache] = None) -> Dict[str, Any]:
|
| 560 |
+
"""Evaluate LongBench with SAME compression pipeline as WikiText."""
|
| 561 |
+
try:
|
| 562 |
+
dataset = load_dataset("THUDM/LongBench", task, split="test")
|
| 563 |
+
|
| 564 |
+
# Sample evaluation examples
|
| 565 |
+
n_samples = min(config.eval_samples, len(dataset))
|
| 566 |
+
samples = dataset.select(range(n_samples))
|
| 567 |
+
|
| 568 |
+
scores = []
|
| 569 |
+
compression_ratios = []
|
| 570 |
+
kv_memories = []
|
| 571 |
+
prefill_times = []
|
| 572 |
+
gen_times = []
|
| 573 |
+
|
| 574 |
+
for sample in samples:
|
| 575 |
+
context = sample.get("context", "")
|
| 576 |
+
question = sample.get("input", sample.get("question", ""))
|
| 577 |
+
answer = sample.get("answers", [sample.get("answer", "")])
|
| 578 |
+
|
| 579 |
+
if isinstance(answer, list) and answer:
|
| 580 |
+
answer = answer[0]
|
| 581 |
+
|
| 582 |
+
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
|
| 583 |
+
|
| 584 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True,
|
| 585 |
+
max_length=config.prefill_length)
|
| 586 |
+
input_ids = inputs.input_ids.to(model.device)
|
| 587 |
+
attention_mask = inputs.attention_mask.to(model.device)
|
| 588 |
+
|
| 589 |
+
# Apply SAME compression pipeline as WikiText
|
| 590 |
+
compression_result = apply_compression_pipeline(
|
| 591 |
+
model, tokenizer, input_ids, attention_mask, cache_manager, config,
|
| 592 |
+
measure_memory=False # Don't measure memory for each sample
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
# Generate with compressed cache
|
| 596 |
+
with torch.inference_mode():
|
| 597 |
+
if torch.cuda.is_available():
|
| 598 |
+
torch.cuda.synchronize()
|
| 599 |
+
gen_start = time.perf_counter()
|
| 600 |
+
|
| 601 |
+
output = model.generate(
|
| 602 |
+
input_ids,
|
| 603 |
+
past_key_values=compression_result['past_key_values'],
|
| 604 |
+
max_new_tokens=50,
|
| 605 |
+
temperature=0.0,
|
| 606 |
+
do_sample=False,
|
| 607 |
+
attention_mask=attention_mask
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
if torch.cuda.is_available():
|
| 611 |
+
torch.cuda.synchronize()
|
| 612 |
+
gen_time = time.perf_counter() - gen_start
|
| 613 |
+
|
| 614 |
+
generated = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 615 |
+
|
| 616 |
+
# Simple accuracy metric
|
| 617 |
+
score = 1.0 if str(answer).lower() in generated.lower() else 0.0
|
| 618 |
+
scores.append(score)
|
| 619 |
+
compression_ratios.append(compression_result['compression_ratio'])
|
| 620 |
+
kv_memories.append(compression_result['compressed_cache_size'] / (1024 * 1024))
|
| 621 |
+
prefill_times.append(compression_result['prefill_time'])
|
| 622 |
+
gen_times.append(gen_time)
|
| 623 |
+
|
| 624 |
+
avg_compression = float(np.mean(compression_ratios)) if compression_ratios else 1.0
|
| 625 |
+
logger.info(f"LongBench {task} avg compression: {avg_compression:.1f}x")
|
| 626 |
+
|
| 627 |
+
return {
|
| 628 |
+
'accuracy': float(np.mean(scores)),
|
| 629 |
+
'n_samples': n_samples,
|
| 630 |
+
'compression_ratio': avg_compression,
|
| 631 |
+
'kv_cache_memory_mb': float(np.mean(kv_memories)) if kv_memories else 0.0,
|
| 632 |
+
'prefill_time': float(np.mean(prefill_times)) if prefill_times else 0.0,
|
| 633 |
+
'generation_time': float(np.mean(gen_times)) if gen_times else 0.0
|
| 634 |
+
}
|
| 635 |
+
|
| 636 |
+
except Exception as e:
|
| 637 |
+
logger.error(f"Error evaluating LongBench task {task}: {e}")
|
| 638 |
+
return {
|
| 639 |
+
'accuracy': 0.0,
|
| 640 |
+
'n_samples': 0,
|
| 641 |
+
'compression_ratio': 1.0,
|
| 642 |
+
'kv_cache_memory_mb': 0.0,
|
| 643 |
+
'prefill_time': 0.0,
|
| 644 |
+
'generation_time': 0.0
|
| 645 |
+
}
|
| 646 |
+
|
| 647 |
|
| 648 |
def load_model_and_tokenizer(model_name: str, config: CompressionConfig):
|
| 649 |
"""Load model and tokenizer with proper configuration - NO HARDCODING."""
|
|
|
|
| 695 |
|
| 696 |
return model, tokenizer
|
| 697 |
|
| 698 |
+
|
| 699 |
def load_real_dataset_samples(config: CompressionConfig, tokenizer) -> List[str]:
|
| 700 |
"""Load dataset samples based on benchmark type - NO HARDCODING."""
|
| 701 |
logger.info(f"Loading samples for benchmark: {config.benchmark_type}")
|
| 702 |
|
| 703 |
+
if config.benchmark_type == "wikitext":
|
| 704 |
# Original WikiText loading
|
| 705 |
texts = []
|
| 706 |
min_tokens = config.prefill_length + config.generation_length
|
|
|
|
| 768 |
logger.info(f"Loaded {len(texts)} text samples")
|
| 769 |
return texts
|
| 770 |
|
| 771 |
+
|
| 772 |
def run_research_benchmark(model_name: str, config: CompressionConfig, dataset_texts: Optional[List[str]] = None) -> Tuple[BenchmarkMetrics, Dict, List[Dict], List[Dict]]:
|
| 773 |
+
"""Research-grade benchmark with UNIFIED compression for ALL benchmarks."""
|
| 774 |
logger.info(f"Starting benchmark: {model_name} with {config.compression_type.value}")
|
| 775 |
logger.info(f"Benchmark type: {config.benchmark_type}")
|
| 776 |
logger.info(f"Config hash: {config.get_hash()}")
|
|
|
|
| 812 |
|
| 813 |
metrics = BenchmarkMetrics()
|
| 814 |
|
| 815 |
+
# Run benchmark-specific evaluation with UNIFIED compression
|
| 816 |
if config.benchmark_type == "niah":
|
| 817 |
+
# NIAH evaluation with unified compression
|
| 818 |
for depth in BENCHMARK_CONFIGS["niah"]["depths"]:
|
| 819 |
config.niah_depth_percent = depth
|
| 820 |
for idx in range(min(config.eval_samples, 10)):
|
| 821 |
cache_manager = QuantizedKVCache(config)
|
| 822 |
cache_manager.n_layers = n_layers
|
| 823 |
|
| 824 |
+
result = evaluate_niah(model, tokenizer, config, cache_manager)
|
| 825 |
+
|
| 826 |
+
metrics.niah_retrieval_accuracy.append(result['accuracy'])
|
| 827 |
+
metrics.compression_ratios.append(result['compression_ratio'])
|
| 828 |
+
metrics.kv_cache_memory_samples_mb.append(result['kv_cache_memory_mb'])
|
| 829 |
+
metrics.prefill_times.append(result['prefill_time'])
|
| 830 |
+
metrics.decode_times.append(result['generation_time'] / 20) # Per token
|
| 831 |
|
| 832 |
+
if result['prefill_peak_mem'] > 0:
|
| 833 |
+
metrics.prefill_peak_memories.append(result['prefill_peak_mem'])
|
| 834 |
+
|
| 835 |
+
# Record per-sample data
|
| 836 |
+
per_sample_records.append({
|
| 837 |
+
'benchmark': 'niah',
|
| 838 |
+
'depth_percent': depth,
|
| 839 |
+
'sample_idx': idx,
|
| 840 |
+
'accuracy': result['accuracy'],
|
| 841 |
+
'compression_ratio': result['compression_ratio'],
|
| 842 |
+
'kv_cache_memory_mb': result['kv_cache_memory_mb'],
|
| 843 |
+
'compression_type': config.compression_type.value
|
| 844 |
+
})
|
| 845 |
|
| 846 |
elif config.benchmark_type == "ruler":
|
| 847 |
+
# RULER evaluation with unified compression
|
| 848 |
for idx in range(config.eval_samples):
|
| 849 |
cache_manager = QuantizedKVCache(config)
|
| 850 |
cache_manager.n_layers = n_layers
|
| 851 |
|
| 852 |
+
result = evaluate_ruler(model, tokenizer, config, cache_manager)
|
| 853 |
+
|
| 854 |
+
metrics.ruler_exact_match.append(result['exact_match'])
|
| 855 |
+
metrics.compression_ratios.append(result['compression_ratio'])
|
| 856 |
+
metrics.kv_cache_memory_samples_mb.append(result['kv_cache_memory_mb'])
|
| 857 |
+
metrics.prefill_times.append(result['prefill_time'])
|
| 858 |
+
metrics.decode_times.append(result['generation_time'] / 10) # Per token
|
| 859 |
+
|
| 860 |
+
if result['prefill_peak_mem'] > 0:
|
| 861 |
+
metrics.prefill_peak_memories.append(result['prefill_peak_mem'])
|
| 862 |
|
| 863 |
+
per_sample_records.append({
|
| 864 |
+
'benchmark': 'ruler',
|
| 865 |
+
'sample_idx': idx,
|
| 866 |
+
'exact_match': result['exact_match'],
|
| 867 |
+
'compression_ratio': result['compression_ratio'],
|
| 868 |
+
'kv_cache_memory_mb': result['kv_cache_memory_mb'],
|
| 869 |
+
'compression_type': config.compression_type.value
|
| 870 |
+
})
|
| 871 |
|
| 872 |
elif config.benchmark_type == "scbench":
|
| 873 |
+
# SCBench evaluation with unified compression
|
| 874 |
for idx in range(config.eval_samples):
|
| 875 |
cache_manager = QuantizedKVCache(config)
|
| 876 |
cache_manager.n_layers = n_layers
|
| 877 |
|
| 878 |
+
result = evaluate_scbench(model, tokenizer, config, cache_manager)
|
|
|
|
| 879 |
|
| 880 |
+
metrics.scbench_turn_accuracy.append(result['accuracy'])
|
| 881 |
+
metrics.compression_ratios.append(result['compression_ratio'])
|
| 882 |
+
metrics.kv_cache_memory_samples_mb.append(result['kv_cache_memory_mb'])
|
| 883 |
+
metrics.prefill_times.append(result['prefill_time'])
|
| 884 |
+
metrics.decode_times.append(result['generation_time'] / 20) # Per token
|
| 885 |
+
|
| 886 |
+
if result['prefill_peak_mem'] > 0:
|
| 887 |
+
metrics.prefill_peak_memories.append(result['prefill_peak_mem'])
|
| 888 |
+
|
| 889 |
+
per_sample_records.append({
|
| 890 |
+
'benchmark': 'scbench',
|
| 891 |
+
'sample_idx': idx,
|
| 892 |
+
'accuracy': result['accuracy'],
|
| 893 |
+
'compression_ratio': result['compression_ratio'],
|
| 894 |
+
'kv_cache_memory_mb': result['kv_cache_memory_mb'],
|
| 895 |
+
'compression_type': config.compression_type.value
|
| 896 |
+
})
|
| 897 |
|
| 898 |
elif config.benchmark_type == "longbench":
|
| 899 |
+
# LongBench evaluation with unified compression
|
| 900 |
if config.benchmark_subset:
|
| 901 |
cache_manager = QuantizedKVCache(config)
|
| 902 |
cache_manager.n_layers = n_layers
|
| 903 |
|
| 904 |
+
result = evaluate_longbench_task(model, tokenizer, config,
|
| 905 |
config.benchmark_subset, cache_manager)
|
| 906 |
+
|
| 907 |
+
metrics.longbench_scores.append(result)
|
| 908 |
+
metrics.compression_ratios.append(result['compression_ratio'])
|
| 909 |
+
metrics.kv_cache_memory_samples_mb.append(result['kv_cache_memory_mb'])
|
| 910 |
+
metrics.prefill_times.append(result['prefill_time'])
|
| 911 |
+
|
| 912 |
+
if result['generation_time'] > 0:
|
| 913 |
+
metrics.decode_times.append(result['generation_time'] / 50) # Per token
|
| 914 |
+
|
| 915 |
+
per_sample_records.append({
|
| 916 |
+
'benchmark': 'longbench',
|
| 917 |
+
'subset': config.benchmark_subset,
|
| 918 |
+
'accuracy': result['accuracy'],
|
| 919 |
+
'compression_ratio': result['compression_ratio'],
|
| 920 |
+
'kv_cache_memory_mb': result['kv_cache_memory_mb'],
|
| 921 |
+
'compression_type': config.compression_type.value
|
| 922 |
+
})
|
| 923 |
|
| 924 |
else:
|
| 925 |
+
# Standard WikiText perplexity evaluation with existing compression
|
| 926 |
for idx in range(config.eval_samples):
|
| 927 |
logger.info(f"Sample {idx+1}/{config.eval_samples}")
|
| 928 |
|
|
|
|
| 943 |
input_ids = inputs.input_ids.to(device)
|
| 944 |
attention_mask = inputs.attention_mask.to(device)
|
| 945 |
|
| 946 |
+
# Apply unified compression pipeline
|
| 947 |
+
compression_result = apply_compression_pipeline(
|
| 948 |
+
model, tokenizer, input_ids, attention_mask, cache_manager, config
|
| 949 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 950 |
|
| 951 |
+
metrics.prefill_times.append(compression_result['prefill_time'])
|
| 952 |
+
metrics.compression_ratios.append(compression_result['compression_ratio'])
|
| 953 |
+
metrics.kv_cache_memory_samples_mb.append(compression_result['compressed_cache_size'] / (1024 * 1024))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 954 |
|
| 955 |
+
if compression_result['prefill_peak_mem'] > 0:
|
| 956 |
+
metrics.prefill_peak_memories.append(compression_result['prefill_peak_mem'])
|
| 957 |
|
| 958 |
+
if compression_result['prefill_loss'] is not None:
|
| 959 |
+
prefill_perplexity = np.exp(compression_result['prefill_loss'])
|
| 960 |
+
metrics.prefill_perplexities.append(min(prefill_perplexity, 1000))
|
| 961 |
|
| 962 |
+
# Generation phase with timing
|
| 963 |
generated_ids = input_ids.clone()
|
| 964 |
decode_times = []
|
| 965 |
generation_losses = []
|
| 966 |
+
past_key_values = compression_result['past_key_values']
|
| 967 |
|
| 968 |
for gen_step in range(config.generation_length):
|
| 969 |
if torch.cuda.is_available():
|
|
|
|
| 998 |
if generation_losses:
|
| 999 |
generation_perplexity = np.exp(np.mean(generation_losses))
|
| 1000 |
metrics.generation_perplexities.append(min(generation_perplexity, 1000))
|
| 1001 |
+
|
| 1002 |
+
per_sample_records.append({
|
| 1003 |
+
'benchmark': 'wikitext',
|
| 1004 |
+
'sample_idx': idx,
|
| 1005 |
+
'prefill_perplexity': metrics.prefill_perplexities[-1] if metrics.prefill_perplexities else None,
|
| 1006 |
+
'generation_perplexity': metrics.generation_perplexities[-1] if metrics.generation_perplexities else None,
|
| 1007 |
+
'compression_ratio': compression_result['compression_ratio'],
|
| 1008 |
+
'kv_cache_memory_mb': compression_result['compressed_cache_size'] / (1024 * 1024),
|
| 1009 |
+
'compression_type': config.compression_type.value
|
| 1010 |
+
})
|
| 1011 |
|
| 1012 |
metrics.calculate_statistics(config)
|
| 1013 |
all_metrics.append(metrics)
|
| 1014 |
|
| 1015 |
+
# Aggregate results across seeds
|
| 1016 |
final_metrics = BenchmarkMetrics()
|
| 1017 |
for m in all_metrics:
|
| 1018 |
final_metrics.prefill_times.extend(m.prefill_times)
|
|
|
|
| 1056 |
else:
|
| 1057 |
summary['prefill_perplexity'] = final_metrics.prefill_perplexity_mean
|
| 1058 |
summary['generation_perplexity'] = final_metrics.generation_perplexity_mean
|
| 1059 |
+
|
| 1060 |
+
# Always add timing and memory metrics
|
| 1061 |
+
summary['prefill_time_ms'] = final_metrics.prefill_time_mean * 1000
|
| 1062 |
+
summary['decode_time_ms'] = final_metrics.decode_time_per_token_mean_ms
|
| 1063 |
+
summary['throughput_tokens_sec'] = final_metrics.decode_tokens_per_sec
|
| 1064 |
+
summary['end_to_end_throughput'] = final_metrics.end_to_end_throughput
|
| 1065 |
+
summary['end_to_end_latency_ms'] = final_metrics.end_to_end_latency_ms
|
| 1066 |
+
summary['peak_memory_mb'] = final_metrics.prefill_peak_memory_mean_mb
|
| 1067 |
|
| 1068 |
return final_metrics, summary, per_sample_records, per_layer_fingerprints
|
| 1069 |
|
| 1070 |
+
|
| 1071 |
def export_proof_bundle(bundle_dir: str, config: CompressionConfig,
|
| 1072 |
metrics: BenchmarkMetrics, summary: Dict[str, Any],
|
| 1073 |
per_sample_records: List[Dict[str, Any]],
|
|
|
|
| 1122 |
logger.info(f"Proof bundle exported: {zip_path}")
|
| 1123 |
return zip_path
|
| 1124 |
|
| 1125 |
+
|
| 1126 |
def verify_proof_bundle(bundle_root: str, config: CompressionConfig, proving: ProvingConfig) -> Dict[str, Any]:
|
| 1127 |
"""Verify proof bundle - recompute metrics and check tolerances."""
|
| 1128 |
try:
|
|
|
|
| 1158 |
# Verify based on benchmark type
|
| 1159 |
if config.benchmark_type == "niah":
|
| 1160 |
if "niah_accuracy" in summary:
|
| 1161 |
+
recomputed["niah_accuracy"] = mean_of("accuracy")
|
| 1162 |
elif config.benchmark_type == "ruler":
|
| 1163 |
if "ruler_exact_match" in summary:
|
| 1164 |
+
recomputed["ruler_exact_match"] = mean_of("exact_match")
|
| 1165 |
elif config.benchmark_type == "scbench":
|
| 1166 |
if "scbench_accuracy" in summary:
|
| 1167 |
+
recomputed["scbench_accuracy"] = mean_of("accuracy")
|
| 1168 |
elif config.benchmark_type == "longbench":
|
| 1169 |
if "longbench_accuracy" in summary:
|
| 1170 |
+
recomputed["longbench_accuracy"] = mean_of("accuracy")
|
| 1171 |
elif config.benchmark_type == "wikitext":
|
| 1172 |
# WikiText benchmark metrics
|
|
|
|
|
|
|
| 1173 |
if "prefill_perplexity" in summary:
|
| 1174 |
recomputed["prefill_perplexity"] = mean_of("prefill_perplexity")
|
| 1175 |
if "generation_perplexity" in summary:
|
| 1176 |
recomputed["generation_perplexity"] = mean_of("generation_perplexity")
|
| 1177 |
+
|
| 1178 |
+
# Always verify compression metrics
|
| 1179 |
+
recomputed["compression_ratio"] = mean_of("compression_ratio")
|
| 1180 |
+
recomputed["kv_cache_memory_mb"] = mean_of("kv_cache_memory_mb")
|
| 1181 |
|
| 1182 |
for k, v in recomputed.items():
|
| 1183 |
s = summary.get(k)
|