Create core/graph_mamba.py
Browse files- core/graph_mamba.py +162 -0
core/graph_mamba.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from .mamba_block import MambaBlock
|
| 4 |
+
from .graph_sequencer import GraphSequencer, PositionalEncoder
|
| 5 |
+
|
| 6 |
+
class GraphMamba(nn.Module):
|
| 7 |
+
"""
|
| 8 |
+
Production Graph-Mamba model
|
| 9 |
+
Dynamically handles any graph size and structure
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
def __init__(self, config):
|
| 13 |
+
super().__init__()
|
| 14 |
+
|
| 15 |
+
self.config = config
|
| 16 |
+
self.d_model = config['model']['d_model']
|
| 17 |
+
self.n_layers = config['model']['n_layers']
|
| 18 |
+
self.dropout = config['model']['dropout']
|
| 19 |
+
self.ordering_strategy = config['ordering']['strategy']
|
| 20 |
+
|
| 21 |
+
# Input projection (dynamic input dimension)
|
| 22 |
+
self.input_proj = None # Will be initialized on first forward
|
| 23 |
+
|
| 24 |
+
# Positional encoding
|
| 25 |
+
self.pos_encoder = PositionalEncoder()
|
| 26 |
+
self.pos_embed = nn.Linear(11, self.d_model) # 1 + 10 distances
|
| 27 |
+
|
| 28 |
+
# Mamba layers
|
| 29 |
+
self.mamba_layers = nn.ModuleList([
|
| 30 |
+
MambaBlock(
|
| 31 |
+
d_model=self.d_model,
|
| 32 |
+
d_state=config['model']['d_state'],
|
| 33 |
+
d_conv=config['model']['d_conv'],
|
| 34 |
+
expand=config['model']['expand']
|
| 35 |
+
)
|
| 36 |
+
for _ in range(self.n_layers)
|
| 37 |
+
])
|
| 38 |
+
|
| 39 |
+
# Layer norms
|
| 40 |
+
self.layer_norms = nn.ModuleList([
|
| 41 |
+
nn.LayerNorm(self.d_model)
|
| 42 |
+
for _ in range(self.n_layers)
|
| 43 |
+
])
|
| 44 |
+
|
| 45 |
+
# Dropout
|
| 46 |
+
self.dropout_layer = nn.Dropout(self.dropout)
|
| 47 |
+
|
| 48 |
+
# Graph sequencer
|
| 49 |
+
self.sequencer = GraphSequencer()
|
| 50 |
+
|
| 51 |
+
def _init_input_proj(self, input_dim):
|
| 52 |
+
"""Initialize input projection dynamically"""
|
| 53 |
+
if self.input_proj is None:
|
| 54 |
+
self.input_proj = nn.Linear(input_dim, self.d_model)
|
| 55 |
+
|
| 56 |
+
def forward(self, x, edge_index, batch=None):
|
| 57 |
+
"""
|
| 58 |
+
Forward pass with dynamic graph handling
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
x: Node features (num_nodes, input_dim)
|
| 62 |
+
edge_index: Edge connectivity (2, num_edges)
|
| 63 |
+
batch: Batch assignment (num_nodes,) - optional
|
| 64 |
+
"""
|
| 65 |
+
num_nodes = x.size(0)
|
| 66 |
+
input_dim = x.size(1)
|
| 67 |
+
|
| 68 |
+
# Initialize input projection if needed
|
| 69 |
+
self._init_input_proj(input_dim)
|
| 70 |
+
|
| 71 |
+
# Project input features
|
| 72 |
+
h = self.input_proj(x) # (num_nodes, d_model)
|
| 73 |
+
|
| 74 |
+
if batch is None:
|
| 75 |
+
# Single graph processing
|
| 76 |
+
h = self._process_single_graph(h, edge_index)
|
| 77 |
+
else:
|
| 78 |
+
# Batch processing
|
| 79 |
+
h = self._process_batch(h, edge_index, batch)
|
| 80 |
+
|
| 81 |
+
return h
|
| 82 |
+
|
| 83 |
+
def _process_single_graph(self, h, edge_index):
|
| 84 |
+
"""Process a single graph"""
|
| 85 |
+
num_nodes = h.size(0)
|
| 86 |
+
|
| 87 |
+
# Get ordering
|
| 88 |
+
if self.ordering_strategy == "multi_view":
|
| 89 |
+
# Use BFS as primary for now (can be extended)
|
| 90 |
+
order = self.sequencer.bfs_ordering(edge_index, num_nodes)
|
| 91 |
+
elif self.ordering_strategy == "spectral":
|
| 92 |
+
order = self.sequencer.spectral_ordering(edge_index, num_nodes)
|
| 93 |
+
elif self.ordering_strategy == "degree":
|
| 94 |
+
order = self.sequencer.degree_ordering(edge_index, num_nodes)
|
| 95 |
+
else: # default to BFS
|
| 96 |
+
order = self.sequencer.bfs_ordering(edge_index, num_nodes)
|
| 97 |
+
|
| 98 |
+
# Add positional encoding
|
| 99 |
+
seq_pos, distances = self.pos_encoder.encode_positions(h, edge_index, order)
|
| 100 |
+
pos_features = torch.cat([seq_pos, distances], dim=1) # (num_nodes, 11)
|
| 101 |
+
pos_embed = self.pos_embed(pos_features)
|
| 102 |
+
|
| 103 |
+
# Reorder nodes for sequential processing
|
| 104 |
+
h_ordered = h[order] + pos_embed[order] # Add positional encoding
|
| 105 |
+
h_ordered = h_ordered.unsqueeze(0) # (1, num_nodes, d_model)
|
| 106 |
+
|
| 107 |
+
# Process through Mamba layers
|
| 108 |
+
for mamba, ln in zip(self.mamba_layers, self.layer_norms):
|
| 109 |
+
# Pre-norm residual connection
|
| 110 |
+
h_ordered = h_ordered + self.dropout_layer(mamba(ln(h_ordered)))
|
| 111 |
+
|
| 112 |
+
# Restore original order
|
| 113 |
+
h_out = h_ordered.squeeze(0) # (num_nodes, d_model)
|
| 114 |
+
|
| 115 |
+
# Create inverse mapping
|
| 116 |
+
inverse_order = torch.argsort(order)
|
| 117 |
+
h_final = h_out[inverse_order]
|
| 118 |
+
|
| 119 |
+
return h_final
|
| 120 |
+
|
| 121 |
+
def _process_batch(self, h, edge_index, batch):
|
| 122 |
+
"""Process batched graphs"""
|
| 123 |
+
batch_size = batch.max().item() + 1
|
| 124 |
+
outputs = []
|
| 125 |
+
|
| 126 |
+
for b in range(batch_size):
|
| 127 |
+
# Extract subgraph
|
| 128 |
+
mask = batch == b
|
| 129 |
+
batch_h = h[mask]
|
| 130 |
+
|
| 131 |
+
# Get edges for this graph
|
| 132 |
+
edge_mask = mask[edge_index[0]] & mask[edge_index[1]]
|
| 133 |
+
batch_edges = edge_index[:, edge_mask]
|
| 134 |
+
|
| 135 |
+
# Reindex edges to local indices
|
| 136 |
+
node_indices = torch.where(mask)[0]
|
| 137 |
+
node_map = torch.zeros(h.size(0), dtype=torch.long, device=h.device)
|
| 138 |
+
node_map[node_indices] = torch.arange(batch_h.size(0), device=h.device)
|
| 139 |
+
batch_edges_local = node_map[batch_edges]
|
| 140 |
+
|
| 141 |
+
# Process subgraph
|
| 142 |
+
batch_output = self._process_single_graph(batch_h, batch_edges_local)
|
| 143 |
+
outputs.append(batch_output)
|
| 144 |
+
|
| 145 |
+
# Reconstruct full batch
|
| 146 |
+
h_out = torch.zeros_like(h)
|
| 147 |
+
start_idx = 0
|
| 148 |
+
for b, output in enumerate(outputs):
|
| 149 |
+
mask = batch == b
|
| 150 |
+
h_out[mask] = output
|
| 151 |
+
|
| 152 |
+
return h_out
|
| 153 |
+
|
| 154 |
+
def get_graph_embedding(self, h, batch=None):
|
| 155 |
+
"""Get graph-level representation"""
|
| 156 |
+
if batch is None:
|
| 157 |
+
# Single graph - mean pooling
|
| 158 |
+
return h.mean(dim=0, keepdim=True)
|
| 159 |
+
else:
|
| 160 |
+
# Batched graphs
|
| 161 |
+
from torch_geometric.nn import global_mean_pool
|
| 162 |
+
return global_mean_pool(h, batch)
|