Update utils/visualization.py
Browse files- utils/visualization.py +223 -674
utils/visualization.py
CHANGED
|
@@ -11,31 +11,15 @@ import logging
|
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
class GraphVisualizer:
|
| 14 |
-
"""
|
| 15 |
-
Advanced graph visualization utilities
|
| 16 |
-
Enterprise-grade with comprehensive error handling
|
| 17 |
-
"""
|
| 18 |
|
| 19 |
@staticmethod
|
| 20 |
def create_graph_plot(data, max_nodes=500, layout_algorithm='spring', node_size_factor=1.0):
|
| 21 |
-
"""
|
| 22 |
-
Create interactive graph visualization with robust error handling
|
| 23 |
-
|
| 24 |
-
Args:
|
| 25 |
-
data: PyTorch Geometric data object
|
| 26 |
-
max_nodes: Maximum number of nodes to display
|
| 27 |
-
layout_algorithm: Layout algorithm ('spring', 'circular', 'kamada_kawai', 'spectral')
|
| 28 |
-
node_size_factor: Factor to scale node sizes
|
| 29 |
-
|
| 30 |
-
Returns:
|
| 31 |
-
Plotly figure object
|
| 32 |
-
"""
|
| 33 |
try:
|
| 34 |
-
# Validate inputs
|
| 35 |
if not hasattr(data, 'edge_index') or not hasattr(data, 'num_nodes'):
|
| 36 |
raise ValueError("Data must have edge_index and num_nodes attributes")
|
| 37 |
|
| 38 |
-
# Limit nodes for performance
|
| 39 |
num_nodes = min(data.num_nodes, max_nodes)
|
| 40 |
if num_nodes <= 0:
|
| 41 |
raise ValueError("No nodes to visualize")
|
|
@@ -45,8 +29,6 @@ class GraphVisualizer:
|
|
| 45 |
|
| 46 |
if data.edge_index.size(1) > 0:
|
| 47 |
edge_list = data.edge_index.t().cpu().numpy()
|
| 48 |
-
|
| 49 |
-
# Filter edges to include only first max_nodes
|
| 50 |
edge_list = edge_list[
|
| 51 |
(edge_list[:, 0] < num_nodes) & (edge_list[:, 1] < num_nodes)
|
| 52 |
]
|
|
@@ -54,25 +36,30 @@ class GraphVisualizer:
|
|
| 54 |
if len(edge_list) > 0:
|
| 55 |
G.add_edges_from(edge_list)
|
| 56 |
|
| 57 |
-
# Add isolated nodes
|
| 58 |
G.add_nodes_from(range(num_nodes))
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
pos =
|
| 62 |
|
| 63 |
-
# Node colors
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# Create edge traces
|
| 68 |
-
edge_x, edge_y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
# Create node traces
|
| 71 |
-
node_x
|
| 72 |
-
|
| 73 |
-
)
|
| 74 |
|
| 75 |
-
# Create figure
|
| 76 |
fig = go.Figure()
|
| 77 |
|
| 78 |
# Add edges
|
|
@@ -82,7 +69,6 @@ class GraphVisualizer:
|
|
| 82 |
line=dict(width=0.8, color='rgba(125,125,125,0.5)'),
|
| 83 |
hoverinfo='none',
|
| 84 |
mode='lines',
|
| 85 |
-
name='Edges',
|
| 86 |
showlegend=False
|
| 87 |
))
|
| 88 |
|
|
@@ -90,41 +76,23 @@ class GraphVisualizer:
|
|
| 90 |
fig.add_trace(go.Scatter(
|
| 91 |
x=node_x, y=node_y,
|
| 92 |
mode='markers',
|
| 93 |
-
hoverinfo='text',
|
| 94 |
-
hovertext=node_info,
|
| 95 |
-
text=node_text,
|
| 96 |
marker=dict(
|
| 97 |
-
size=
|
| 98 |
color=node_colors,
|
| 99 |
colorscale='Viridis',
|
| 100 |
line=dict(width=2, color='white'),
|
| 101 |
-
opacity=0.8
|
| 102 |
-
colorbar=dict(title="Node Label") if hasattr(data, 'y') and data.y is not None else None
|
| 103 |
),
|
| 104 |
-
|
|
|
|
| 105 |
showlegend=False
|
| 106 |
))
|
| 107 |
|
| 108 |
-
# Update layout
|
| 109 |
fig.update_layout(
|
| 110 |
-
title=
|
| 111 |
-
text=f'Graph Visualization ({num_nodes} nodes, {len(edge_x)//3 if edge_x else 0} edges)',
|
| 112 |
-
x=0.5,
|
| 113 |
-
font=dict(size=16)
|
| 114 |
-
),
|
| 115 |
showlegend=False,
|
| 116 |
hovermode='closest',
|
| 117 |
margin=dict(b=20, l=5, r=5, t=40),
|
| 118 |
-
annotations=[
|
| 119 |
-
dict(
|
| 120 |
-
text=f"Layout: {layout_algorithm.title()}",
|
| 121 |
-
showarrow=False,
|
| 122 |
-
xref="paper", yref="paper",
|
| 123 |
-
x=0.005, y=-0.002,
|
| 124 |
-
xanchor='left', yanchor='bottom',
|
| 125 |
-
font=dict(color="gray", size=10)
|
| 126 |
-
)
|
| 127 |
-
],
|
| 128 |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 129 |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 130 |
plot_bgcolor='white',
|
|
@@ -138,126 +106,10 @@ class GraphVisualizer:
|
|
| 138 |
logger.error(f"Graph visualization error: {e}")
|
| 139 |
return GraphVisualizer._create_error_figure(f"Visualization error: {str(e)}")
|
| 140 |
|
| 141 |
-
@staticmethod
|
| 142 |
-
def _compute_layout(G, algorithm):
|
| 143 |
-
"""Compute graph layout with fallback options"""
|
| 144 |
-
try:
|
| 145 |
-
if algorithm == 'spring':
|
| 146 |
-
if len(G.nodes()) > 100:
|
| 147 |
-
return nx.spring_layout(G, k=0.5, iterations=20, seed=42)
|
| 148 |
-
else:
|
| 149 |
-
return nx.spring_layout(G, k=1, iterations=50, seed=42)
|
| 150 |
-
elif algorithm == 'circular':
|
| 151 |
-
return nx.circular_layout(G)
|
| 152 |
-
elif algorithm == 'kamada_kawai':
|
| 153 |
-
if len(G.nodes()) <= 500: # Too slow for large graphs
|
| 154 |
-
return nx.kamada_kawai_layout(G)
|
| 155 |
-
else:
|
| 156 |
-
raise ValueError("Too many nodes for Kamada-Kawai")
|
| 157 |
-
elif algorithm == 'spectral':
|
| 158 |
-
if len(G.edges()) > 0:
|
| 159 |
-
return nx.spectral_layout(G)
|
| 160 |
-
else:
|
| 161 |
-
return nx.circular_layout(G)
|
| 162 |
-
else:
|
| 163 |
-
return nx.spring_layout(G, seed=42)
|
| 164 |
-
except Exception as e:
|
| 165 |
-
logger.warning(f"Layout algorithm {algorithm} failed: {e}, using spring layout")
|
| 166 |
-
return nx.spring_layout(G, seed=42)
|
| 167 |
-
|
| 168 |
-
@staticmethod
|
| 169 |
-
def _get_node_colors(data, num_nodes):
|
| 170 |
-
"""Get node colors based on labels"""
|
| 171 |
-
try:
|
| 172 |
-
if hasattr(data, 'y') and data.y is not None:
|
| 173 |
-
node_colors = data.y.cpu().numpy()[:num_nodes]
|
| 174 |
-
unique_labels = np.unique(node_colors)
|
| 175 |
-
color_map = px.colors.qualitative.Set3[:len(unique_labels)]
|
| 176 |
-
else:
|
| 177 |
-
node_colors = [0] * num_nodes
|
| 178 |
-
color_map = ['lightblue']
|
| 179 |
-
|
| 180 |
-
return node_colors, color_map
|
| 181 |
-
except Exception as e:
|
| 182 |
-
logger.warning(f"Node color computation failed: {e}")
|
| 183 |
-
return [0] * num_nodes, ['lightblue']
|
| 184 |
-
|
| 185 |
-
@staticmethod
|
| 186 |
-
def _get_node_sizes(G, size_factor):
|
| 187 |
-
"""Get node sizes based on degree"""
|
| 188 |
-
try:
|
| 189 |
-
node_sizes = []
|
| 190 |
-
for node in G.nodes():
|
| 191 |
-
degree = G.degree(node)
|
| 192 |
-
size = max(5, min(20, 5 + degree * 2)) * size_factor
|
| 193 |
-
node_sizes.append(size)
|
| 194 |
-
return node_sizes
|
| 195 |
-
except Exception as e:
|
| 196 |
-
logger.warning(f"Node size computation failed: {e}")
|
| 197 |
-
return [8] * len(G.nodes())
|
| 198 |
-
|
| 199 |
-
@staticmethod
|
| 200 |
-
def _create_edge_traces(G, pos):
|
| 201 |
-
"""Create edge traces for plotting"""
|
| 202 |
-
try:
|
| 203 |
-
edge_x, edge_y, edge_info = [], [], []
|
| 204 |
-
|
| 205 |
-
for edge in G.edges():
|
| 206 |
-
if edge[0] in pos and edge[1] in pos:
|
| 207 |
-
x0, y0 = pos[edge[0]]
|
| 208 |
-
x1, y1 = pos[edge[1]]
|
| 209 |
-
edge_x.extend([x0, x1, None])
|
| 210 |
-
edge_y.extend([y0, y1, None])
|
| 211 |
-
edge_info.append(f"Edge: {edge[0]} - {edge[1]}")
|
| 212 |
-
|
| 213 |
-
return edge_x, edge_y, edge_info
|
| 214 |
-
except Exception as e:
|
| 215 |
-
logger.warning(f"Edge trace creation failed: {e}")
|
| 216 |
-
return [], [], []
|
| 217 |
-
|
| 218 |
-
@staticmethod
|
| 219 |
-
def _create_node_traces(G, pos, node_colors, data):
|
| 220 |
-
"""Create node traces for plotting"""
|
| 221 |
-
try:
|
| 222 |
-
node_x, node_y, node_text, node_info = [], [], [], []
|
| 223 |
-
|
| 224 |
-
for node in G.nodes():
|
| 225 |
-
if node in pos:
|
| 226 |
-
x, y = pos[node]
|
| 227 |
-
node_x.append(x)
|
| 228 |
-
node_y.append(y)
|
| 229 |
-
|
| 230 |
-
# Node info
|
| 231 |
-
degree = G.degree(node)
|
| 232 |
-
label = node_colors[node] if node < len(node_colors) else 0
|
| 233 |
-
node_text.append(f"Node {node}")
|
| 234 |
-
|
| 235 |
-
# Enhanced node info
|
| 236 |
-
info = f"Node: {node}<br>Degree: {degree}<br>Label: {label}"
|
| 237 |
-
if hasattr(data, 'x') and data.x is not None and node < data.x.size(0):
|
| 238 |
-
feature_sum = data.x[node].sum().item()
|
| 239 |
-
info += f"<br>Feature Sum: {feature_sum:.2f}"
|
| 240 |
-
|
| 241 |
-
node_info.append(info)
|
| 242 |
-
|
| 243 |
-
return node_x, node_y, node_text, node_info
|
| 244 |
-
except Exception as e:
|
| 245 |
-
logger.warning(f"Node trace creation failed: {e}")
|
| 246 |
-
return [], [], [], []
|
| 247 |
-
|
| 248 |
@staticmethod
|
| 249 |
def create_metrics_plot(metrics):
|
| 250 |
-
"""
|
| 251 |
-
Create comprehensive metrics visualization
|
| 252 |
-
|
| 253 |
-
Args:
|
| 254 |
-
metrics: Dictionary of metrics
|
| 255 |
-
|
| 256 |
-
Returns:
|
| 257 |
-
Plotly figure object
|
| 258 |
-
"""
|
| 259 |
try:
|
| 260 |
-
# Filter and validate numeric metrics
|
| 261 |
metric_names = []
|
| 262 |
metric_values = []
|
| 263 |
|
|
@@ -270,505 +122,202 @@ class GraphVisualizer:
|
|
| 270 |
if not metric_names:
|
| 271 |
return GraphVisualizer._create_error_figure("No valid metrics to display")
|
| 272 |
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
return fig
|
| 473 |
-
|
| 474 |
-
except Exception as e:
|
| 475 |
-
logger.error(f"Training history plot error: {e}")
|
| 476 |
-
return GraphVisualizer._create_error_figure(f"Training history plot error: {str(e)}")
|
| 477 |
-
|
| 478 |
-
@staticmethod
|
| 479 |
-
def create_dataset_stats_plot(dataset_info):
|
| 480 |
-
"""
|
| 481 |
-
Create dataset statistics visualization
|
| 482 |
-
|
| 483 |
-
Args:
|
| 484 |
-
dataset_info: Dictionary containing dataset statistics
|
| 485 |
-
|
| 486 |
-
Returns:
|
| 487 |
-
Plotly figure object
|
| 488 |
-
"""
|
| 489 |
-
try:
|
| 490 |
-
if not isinstance(dataset_info, dict) or not dataset_info:
|
| 491 |
-
return GraphVisualizer._create_error_figure("No dataset information available")
|
| 492 |
-
|
| 493 |
-
# Prepare data
|
| 494 |
-
stats_data = []
|
| 495 |
-
for key, value in dataset_info.items():
|
| 496 |
-
if isinstance(value, (int, float)) and not np.isnan(value) and np.isfinite(value):
|
| 497 |
-
stats_data.append({
|
| 498 |
-
'Metric': key.replace('_', ' ').title(),
|
| 499 |
-
'Value': value
|
| 500 |
-
})
|
| 501 |
-
|
| 502 |
-
if not stats_data:
|
| 503 |
-
return GraphVisualizer._create_error_figure("No valid statistics to display")
|
| 504 |
-
|
| 505 |
-
df = pd.DataFrame(stats_data)
|
| 506 |
-
|
| 507 |
-
# Create subplots
|
| 508 |
-
fig = make_subplots(
|
| 509 |
-
rows=2, cols=2,
|
| 510 |
-
subplot_titles=('Dataset Overview', 'Graph Size Distribution', 'Feature Statistics', 'Connectivity'),
|
| 511 |
-
specs=[[{"type": "bar"}, {"type": "histogram"}],
|
| 512 |
-
[{"type": "bar"}, {"type": "bar"}]]
|
| 513 |
-
)
|
| 514 |
-
|
| 515 |
-
# Main statistics bar chart
|
| 516 |
-
main_metrics = ['Num Features', 'Num Classes', 'Num Graphs', 'Total Nodes', 'Total Edges']
|
| 517 |
-
main_data = df[df['Metric'].isin(main_metrics)]
|
| 518 |
-
|
| 519 |
-
if not main_data.empty:
|
| 520 |
-
fig.add_trace(
|
| 521 |
-
go.Bar(
|
| 522 |
-
x=main_data['Metric'],
|
| 523 |
-
y=main_data['Value'],
|
| 524 |
-
marker_color=px.colors.qualitative.Pastel1[:len(main_data)],
|
| 525 |
-
text=[f'{int(v):,}' if v >= 1 else f'{v:.2f}' for v in main_data['Value']],
|
| 526 |
-
textposition='auto',
|
| 527 |
-
showlegend=False
|
| 528 |
-
),
|
| 529 |
-
row=1, col=1
|
| 530 |
-
)
|
| 531 |
-
|
| 532 |
-
# Graph size distribution
|
| 533 |
-
if 'num_graphs' in dataset_info and dataset_info['num_graphs'] > 1:
|
| 534 |
-
# Simulate distribution based on min/max/avg
|
| 535 |
-
avg_nodes = dataset_info.get('avg_nodes', 100)
|
| 536 |
-
min_nodes = dataset_info.get('min_nodes', avg_nodes * 0.5)
|
| 537 |
-
max_nodes = dataset_info.get('max_nodes', avg_nodes * 1.5)
|
| 538 |
-
|
| 539 |
-
# Generate realistic distribution
|
| 540 |
-
np.random.seed(42)
|
| 541 |
-
if max_nodes > min_nodes:
|
| 542 |
-
node_dist = np.random.lognormal(
|
| 543 |
-
mean=np.log(avg_nodes),
|
| 544 |
-
sigma=0.5,
|
| 545 |
-
size=min(100, int(dataset_info['num_graphs']))
|
| 546 |
-
)
|
| 547 |
-
node_dist = np.clip(node_dist, min_nodes, max_nodes)
|
| 548 |
-
else:
|
| 549 |
-
node_dist = [avg_nodes] * min(100, int(dataset_info['num_graphs']))
|
| 550 |
-
|
| 551 |
-
fig.add_trace(
|
| 552 |
-
go.Histogram(
|
| 553 |
-
x=node_dist,
|
| 554 |
-
nbinsx=20,
|
| 555 |
-
marker_color='lightblue',
|
| 556 |
-
opacity=0.7,
|
| 557 |
-
showlegend=False
|
| 558 |
-
),
|
| 559 |
-
row=1, col=2
|
| 560 |
-
)
|
| 561 |
-
else:
|
| 562 |
-
# Single graph - show as point
|
| 563 |
-
fig.add_trace(
|
| 564 |
-
go.Scatter(
|
| 565 |
-
x=['Nodes'],
|
| 566 |
-
y=[dataset_info.get('avg_nodes', 0)],
|
| 567 |
-
mode='markers',
|
| 568 |
-
marker=dict(size=20, color='blue'),
|
| 569 |
-
showlegend=False
|
| 570 |
-
),
|
| 571 |
-
row=1, col=2
|
| 572 |
-
)
|
| 573 |
-
|
| 574 |
-
# Feature statistics
|
| 575 |
-
feature_metrics = ['Avg Nodes', 'Avg Edges', 'Avg Degree']
|
| 576 |
-
feature_data = df[df['Metric'].isin(feature_metrics)]
|
| 577 |
-
|
| 578 |
-
if not feature_data.empty:
|
| 579 |
-
fig.add_trace(
|
| 580 |
-
go.Bar(
|
| 581 |
-
x=feature_data['Metric'],
|
| 582 |
-
y=feature_data['Value'],
|
| 583 |
-
marker_color=['lightgreen', 'lightcoral', 'lightyellow'],
|
| 584 |
-
text=[f'{v:.1f}' for v in feature_data['Value']],
|
| 585 |
-
textposition='auto',
|
| 586 |
-
showlegend=False
|
| 587 |
-
),
|
| 588 |
-
row=2, col=1
|
| 589 |
-
)
|
| 590 |
-
|
| 591 |
-
# Connectivity analysis
|
| 592 |
-
connectivity_data = []
|
| 593 |
-
if 'total_nodes' in dataset_info and 'total_edges' in dataset_info:
|
| 594 |
-
total_nodes = dataset_info['total_nodes']
|
| 595 |
-
total_edges = dataset_info['total_edges']
|
| 596 |
-
|
| 597 |
-
if total_nodes > 0:
|
| 598 |
-
max_possible_edges = total_nodes * (total_nodes - 1) / 2
|
| 599 |
-
density = total_edges / max_possible_edges if max_possible_edges > 0 else 0
|
| 600 |
-
avg_degree = dataset_info.get('avg_degree', 0)
|
| 601 |
-
|
| 602 |
-
connectivity_data = [
|
| 603 |
-
{'Metric': 'Graph Density', 'Value': density},
|
| 604 |
-
{'Metric': 'Avg Degree', 'Value': avg_degree / total_nodes if total_nodes > 0 else 0},
|
| 605 |
-
{'Metric': 'Edge Ratio', 'Value': total_edges / total_nodes if total_nodes > 0 else 0}
|
| 606 |
-
]
|
| 607 |
-
|
| 608 |
-
if connectivity_data:
|
| 609 |
-
conn_df = pd.DataFrame(connectivity_data)
|
| 610 |
-
fig.add_trace(
|
| 611 |
-
go.Bar(
|
| 612 |
-
x=conn_df['Metric'],
|
| 613 |
-
y=conn_df['Value'],
|
| 614 |
-
marker_color=['lightpink', 'lightsteelblue', 'lightgoldenrodyellow'],
|
| 615 |
-
text=[f'{v:.3f}' for v in conn_df['Value']],
|
| 616 |
-
textposition='auto',
|
| 617 |
-
showlegend=False
|
| 618 |
-
),
|
| 619 |
-
row=2, col=2
|
| 620 |
-
)
|
| 621 |
-
|
| 622 |
-
fig.update_layout(
|
| 623 |
-
title=dict(
|
| 624 |
-
text='Dataset Statistics Dashboard',
|
| 625 |
-
x=0.5,
|
| 626 |
-
font=dict(size=16)
|
| 627 |
-
),
|
| 628 |
-
height=600,
|
| 629 |
-
showlegend=False
|
| 630 |
-
)
|
| 631 |
-
|
| 632 |
-
# Update axes
|
| 633 |
-
fig.update_xaxes(title_text="Metrics", tickangle=45, row=1, col=1)
|
| 634 |
-
fig.update_xaxes(title_text="Number of Nodes", row=1, col=2)
|
| 635 |
-
fig.update_xaxes(title_text="Statistics", tickangle=45, row=2, col=1)
|
| 636 |
-
fig.update_xaxes(title_text="Connectivity Metrics", tickangle=45, row=2, col=2)
|
| 637 |
-
|
| 638 |
-
fig.update_yaxes(title_text="Count", row=1, col=1)
|
| 639 |
-
fig.update_yaxes(title_text="Frequency", row=1, col=2)
|
| 640 |
-
fig.update_yaxes(title_text="Average Value", row=2, col=1)
|
| 641 |
-
fig.update_yaxes(title_text="Ratio", row=2, col=2)
|
| 642 |
-
|
| 643 |
-
return fig
|
| 644 |
-
|
| 645 |
-
except Exception as e:
|
| 646 |
-
logger.error(f"Dataset stats plot error: {e}")
|
| 647 |
-
return GraphVisualizer._create_error_figure(f"Dataset stats error: {str(e)}")
|
| 648 |
-
|
| 649 |
-
@staticmethod
|
| 650 |
-
def _create_error_figure(error_message):
|
| 651 |
-
"""Create an error figure with message"""
|
| 652 |
-
fig = go.Figure()
|
| 653 |
-
fig.add_annotation(
|
| 654 |
-
text=error_message,
|
| 655 |
-
x=0.5, y=0.5,
|
| 656 |
-
xref="paper", yref="paper",
|
| 657 |
-
showarrow=False,
|
| 658 |
-
font=dict(size=14, color="red"),
|
| 659 |
-
bgcolor="rgba(255,255,255,0.8)",
|
| 660 |
-
bordercolor="red",
|
| 661 |
-
borderwidth=1
|
| 662 |
-
)
|
| 663 |
-
fig.update_layout(
|
| 664 |
-
title="Visualization Error",
|
| 665 |
-
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 666 |
-
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 667 |
-
plot_bgcolor='white',
|
| 668 |
-
width=600,
|
| 669 |
-
height=400
|
| 670 |
-
)
|
| 671 |
-
return fig
|
| 672 |
-
|
| 673 |
-
@staticmethod
|
| 674 |
-
def create_comparison_plot(results_dict):
|
| 675 |
-
"""
|
| 676 |
-
Create model comparison visualization
|
| 677 |
-
|
| 678 |
-
Args:
|
| 679 |
-
results_dict: Dictionary mapping model names to their results
|
| 680 |
-
|
| 681 |
-
Returns:
|
| 682 |
-
Plotly figure object
|
| 683 |
-
"""
|
| 684 |
-
try:
|
| 685 |
-
if not isinstance(results_dict, dict) or not results_dict:
|
| 686 |
-
return GraphVisualizer._create_error_figure("No comparison data available")
|
| 687 |
-
|
| 688 |
-
# Extract metrics for comparison
|
| 689 |
-
models = []
|
| 690 |
-
accuracies = []
|
| 691 |
-
f1_scores = []
|
| 692 |
-
losses = []
|
| 693 |
-
|
| 694 |
-
for model_name, metrics in results_dict.items():
|
| 695 |
-
if isinstance(metrics, dict):
|
| 696 |
-
models.append(model_name)
|
| 697 |
-
accuracies.append(metrics.get('accuracy', 0))
|
| 698 |
-
f1_scores.append(metrics.get('f1_macro', 0))
|
| 699 |
-
losses.append(metrics.get('loss', float('inf')))
|
| 700 |
-
|
| 701 |
-
if not models:
|
| 702 |
-
return GraphVisualizer._create_error_figure("No valid model results to compare")
|
| 703 |
-
|
| 704 |
-
# Create comparison figure
|
| 705 |
-
fig = make_subplots(
|
| 706 |
-
rows=1, cols=3,
|
| 707 |
-
subplot_titles=('Accuracy Comparison', 'F1 Score Comparison', 'Loss Comparison')
|
| 708 |
-
)
|
| 709 |
-
|
| 710 |
-
# Accuracy comparison
|
| 711 |
-
fig.add_trace(
|
| 712 |
-
go.Bar(
|
| 713 |
-
x=models,
|
| 714 |
-
y=accuracies,
|
| 715 |
-
name='Accuracy',
|
| 716 |
-
marker_color='lightblue',
|
| 717 |
-
text=[f'{acc:.3f}' for acc in accuracies],
|
| 718 |
-
textposition='auto',
|
| 719 |
-
showlegend=False
|
| 720 |
-
),
|
| 721 |
-
row=1, col=1
|
| 722 |
-
)
|
| 723 |
-
|
| 724 |
-
# F1 Score comparison
|
| 725 |
-
fig.add_trace(
|
| 726 |
-
go.Bar(
|
| 727 |
-
x=models,
|
| 728 |
-
y=f1_scores,
|
| 729 |
-
name='F1 Score',
|
| 730 |
-
marker_color='lightgreen',
|
| 731 |
-
text=[f'{f1:.3f}' for f1 in f1_scores],
|
| 732 |
-
textposition='auto',
|
| 733 |
-
showlegend=False
|
| 734 |
-
),
|
| 735 |
-
row=1, col=2
|
| 736 |
-
)
|
| 737 |
-
|
| 738 |
-
# Loss comparison (filter out infinite values)
|
| 739 |
-
finite_losses = [loss if np.isfinite(loss) else 0 for loss in losses]
|
| 740 |
-
fig.add_trace(
|
| 741 |
-
go.Bar(
|
| 742 |
-
x=models,
|
| 743 |
-
y=finite_losses,
|
| 744 |
-
name='Loss',
|
| 745 |
-
marker_color='lightcoral',
|
| 746 |
-
text=[f'{loss:.3f}' if np.isfinite(loss) else 'inf' for loss in losses],
|
| 747 |
-
textposition='auto',
|
| 748 |
-
showlegend=False
|
| 749 |
-
),
|
| 750 |
-
row=1, col=3
|
| 751 |
-
)
|
| 752 |
-
|
| 753 |
-
fig.update_layout(
|
| 754 |
-
title=dict(
|
| 755 |
-
text='Model Performance Comparison',
|
| 756 |
-
x=0.5,
|
| 757 |
-
font=dict(size=18)
|
| 758 |
-
),
|
| 759 |
-
height=400
|
| 760 |
-
)
|
| 761 |
-
|
| 762 |
-
# Update axes
|
| 763 |
-
fig.update_xaxes(tickangle=45, row=1, col=1)
|
| 764 |
-
fig.update_xaxes(tickangle=45, row=1, col=2)
|
| 765 |
-
fig.update_xaxes(tickangle=45, row=1, col=3)
|
| 766 |
-
|
| 767 |
-
fig.update_yaxes(range=[0, 1], row=1, col=1)
|
| 768 |
-
fig.update_yaxes(range=[0, 1], row=1, col=2)
|
| 769 |
-
|
| 770 |
-
return fig
|
| 771 |
-
|
| 772 |
-
except Exception as e:
|
| 773 |
-
logger.error(f"Comparison plot error: {e}")
|
| 774 |
-
return GraphVisualizer._create_error_figure(f"Comparison plot error: {str(e)}")
|
|
|
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
class GraphVisualizer:
|
| 14 |
+
"""Advanced graph visualization utilities"""
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@staticmethod
|
| 17 |
def create_graph_plot(data, max_nodes=500, layout_algorithm='spring', node_size_factor=1.0):
|
| 18 |
+
"""Create interactive graph visualization"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
try:
|
|
|
|
| 20 |
if not hasattr(data, 'edge_index') or not hasattr(data, 'num_nodes'):
|
| 21 |
raise ValueError("Data must have edge_index and num_nodes attributes")
|
| 22 |
|
|
|
|
| 23 |
num_nodes = min(data.num_nodes, max_nodes)
|
| 24 |
if num_nodes <= 0:
|
| 25 |
raise ValueError("No nodes to visualize")
|
|
|
|
| 29 |
|
| 30 |
if data.edge_index.size(1) > 0:
|
| 31 |
edge_list = data.edge_index.t().cpu().numpy()
|
|
|
|
|
|
|
| 32 |
edge_list = edge_list[
|
| 33 |
(edge_list[:, 0] < num_nodes) & (edge_list[:, 1] < num_nodes)
|
| 34 |
]
|
|
|
|
| 36 |
if len(edge_list) > 0:
|
| 37 |
G.add_edges_from(edge_list)
|
| 38 |
|
|
|
|
| 39 |
G.add_nodes_from(range(num_nodes))
|
| 40 |
|
| 41 |
+
# Layout
|
| 42 |
+
pos = nx.spring_layout(G, seed=42)
|
| 43 |
|
| 44 |
+
# Node colors
|
| 45 |
+
if hasattr(data, 'y') and data.y is not None:
|
| 46 |
+
node_colors = data.y.cpu().numpy()[:num_nodes]
|
| 47 |
+
else:
|
| 48 |
+
node_colors = [0] * num_nodes
|
| 49 |
|
| 50 |
# Create edge traces
|
| 51 |
+
edge_x, edge_y = [], []
|
| 52 |
+
for edge in G.edges():
|
| 53 |
+
if edge[0] in pos and edge[1] in pos:
|
| 54 |
+
x0, y0 = pos[edge[0]]
|
| 55 |
+
x1, y1 = pos[edge[1]]
|
| 56 |
+
edge_x.extend([x0, x1, None])
|
| 57 |
+
edge_y.extend([y0, y1, None])
|
| 58 |
|
| 59 |
# Create node traces
|
| 60 |
+
node_x = [pos[node][0] for node in G.nodes()]
|
| 61 |
+
node_y = [pos[node][1] for node in G.nodes()]
|
|
|
|
| 62 |
|
|
|
|
| 63 |
fig = go.Figure()
|
| 64 |
|
| 65 |
# Add edges
|
|
|
|
| 69 |
line=dict(width=0.8, color='rgba(125,125,125,0.5)'),
|
| 70 |
hoverinfo='none',
|
| 71 |
mode='lines',
|
|
|
|
| 72 |
showlegend=False
|
| 73 |
))
|
| 74 |
|
|
|
|
| 76 |
fig.add_trace(go.Scatter(
|
| 77 |
x=node_x, y=node_y,
|
| 78 |
mode='markers',
|
|
|
|
|
|
|
|
|
|
| 79 |
marker=dict(
|
| 80 |
+
size=8,
|
| 81 |
color=node_colors,
|
| 82 |
colorscale='Viridis',
|
| 83 |
line=dict(width=2, color='white'),
|
| 84 |
+
opacity=0.8
|
|
|
|
| 85 |
),
|
| 86 |
+
text=[f"Node {i}" for i in range(len(node_x))],
|
| 87 |
+
hoverinfo='text',
|
| 88 |
showlegend=False
|
| 89 |
))
|
| 90 |
|
|
|
|
| 91 |
fig.update_layout(
|
| 92 |
+
title=f'Graph Visualization ({num_nodes} nodes)',
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
showlegend=False,
|
| 94 |
hovermode='closest',
|
| 95 |
margin=dict(b=20, l=5, r=5, t=40),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 97 |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 98 |
plot_bgcolor='white',
|
|
|
|
| 106 |
logger.error(f"Graph visualization error: {e}")
|
| 107 |
return GraphVisualizer._create_error_figure(f"Visualization error: {str(e)}")
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
@staticmethod
|
| 110 |
def create_metrics_plot(metrics):
|
| 111 |
+
"""Create comprehensive metrics visualization"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
try:
|
|
|
|
| 113 |
metric_names = []
|
| 114 |
metric_values = []
|
| 115 |
|
|
|
|
| 122 |
if not metric_names:
|
| 123 |
return GraphVisualizer._create_error_figure("No valid metrics to display")
|
| 124 |
|
| 125 |
+
fig = make_subplots(
|
| 126 |
+
rows=1, cols=2,
|
| 127 |
+
subplot_titles=('Performance Metrics', 'Metric Radar Chart'),
|
| 128 |
+
specs=[[{"type": "bar"}, {"type": "polar"}]]
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
colors = px.colors.qualitative.Set3[:len(metric_names)]
|
| 132 |
+
|
| 133 |
+
fig.add_trace(
|
| 134 |
+
go.Bar(
|
| 135 |
+
x=metric_names,
|
| 136 |
+
y=metric_values,
|
| 137 |
+
marker_color=colors,
|
| 138 |
+
text=[f'{v:.3f}' for v in metric_values],
|
| 139 |
+
textposition='auto',
|
| 140 |
+
showlegend=False
|
| 141 |
+
),
|
| 142 |
+
row=1, col=1
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
fig.add_trace(
|
| 146 |
+
go.Scatterpolar(
|
| 147 |
+
r=metric_values + [metric_values[0]],
|
| 148 |
+
theta=metric_names + [metric_names[0]],
|
| 149 |
+
fill='toself',
|
| 150 |
+
line=dict(color='blue'),
|
| 151 |
+
marker=dict(size=8),
|
| 152 |
+
showlegend=False
|
| 153 |
+
),
|
| 154 |
+
row=1, col=2
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
fig.update_layout(
|
| 158 |
+
title='Model Performance Dashboard',
|
| 159 |
+
height=400,
|
| 160 |
+
showlegend=False
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
fig.update_xaxes(title_text="Metrics", tickangle=45, row=1, col=1)
|
| 164 |
+
fig.update_yaxes(title_text="Score", range=[0, 1], row=1, col=1)
|
| 165 |
+
|
| 166 |
+
fig.update_polars(
|
| 167 |
+
radialaxis=dict(range=[0, 1], showticklabels=True),
|
| 168 |
+
row=1, col=2
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
return fig
|
| 172 |
+
|
| 173 |
+
except Exception as e:
|
| 174 |
+
logger.error(f"Metrics plot error: {e}")
|
| 175 |
+
return GraphVisualizer._create_error_figure(f"Metrics plot error: {str(e)}")
|
| 176 |
+
|
| 177 |
+
@staticmethod
|
| 178 |
+
def create_training_history_plot(history):
|
| 179 |
+
"""Create comprehensive training history visualization"""
|
| 180 |
+
try:
|
| 181 |
+
if not isinstance(history, dict) or not history:
|
| 182 |
+
return GraphVisualizer._create_error_figure("No training history available")
|
| 183 |
+
|
| 184 |
+
required_keys = ['train_loss', 'train_acc']
|
| 185 |
+
for key in required_keys:
|
| 186 |
+
if key not in history or not history[key]:
|
| 187 |
+
return GraphVisualizer._create_error_figure(f"Missing {key} in training history")
|
| 188 |
+
|
| 189 |
+
epochs = list(range(len(history['train_loss'])))
|
| 190 |
+
|
| 191 |
+
fig = make_subplots(
|
| 192 |
+
rows=2, cols=2,
|
| 193 |
+
subplot_titles=('Loss Over Time', 'Accuracy Over Time', 'Learning Rate', 'Training Progress'),
|
| 194 |
+
specs=[[{"secondary_y": False}, {"secondary_y": False}],
|
| 195 |
+
[{"secondary_y": False}, {"secondary_y": False}]]
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Training loss
|
| 199 |
+
fig.add_trace(
|
| 200 |
+
go.Scatter(
|
| 201 |
+
x=epochs, y=history['train_loss'],
|
| 202 |
+
mode='lines', name='Train Loss',
|
| 203 |
+
line=dict(color='blue', width=2),
|
| 204 |
+
showlegend=False
|
| 205 |
+
),
|
| 206 |
+
row=1, col=1
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
if 'val_loss' in history and history['val_loss']:
|
| 210 |
+
fig.add_trace(
|
| 211 |
+
go.Scatter(
|
| 212 |
+
x=epochs, y=history['val_loss'],
|
| 213 |
+
mode='lines', name='Val Loss',
|
| 214 |
+
line=dict(color='red', width=2),
|
| 215 |
+
showlegend=False
|
| 216 |
+
),
|
| 217 |
+
row=1, col=1
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# Training accuracy
|
| 221 |
+
fig.add_trace(
|
| 222 |
+
go.Scatter(
|
| 223 |
+
x=epochs, y=history['train_acc'],
|
| 224 |
+
mode='lines', name='Train Acc',
|
| 225 |
+
line=dict(color='green', width=2),
|
| 226 |
+
showlegend=False
|
| 227 |
+
),
|
| 228 |
+
row=1, col=2
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
if 'val_acc' in history and history['val_acc']:
|
| 232 |
+
fig.add_trace(
|
| 233 |
+
go.Scatter(
|
| 234 |
+
x=epochs, y=history['val_acc'],
|
| 235 |
+
mode='lines', name='Val Acc',
|
| 236 |
+
line=dict(color='orange', width=2),
|
| 237 |
+
showlegend=False
|
| 238 |
+
),
|
| 239 |
+
row=1, col=2
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
# Learning rate
|
| 243 |
+
if 'lr' in history and history['lr']:
|
| 244 |
+
fig.add_trace(
|
| 245 |
+
go.Scatter(
|
| 246 |
+
x=epochs, y=history['lr'],
|
| 247 |
+
mode='lines', name='Learning Rate',
|
| 248 |
+
line=dict(color='purple', width=2),
|
| 249 |
+
showlegend=False
|
| 250 |
+
),
|
| 251 |
+
row=2, col=1
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Training progress summary
|
| 255 |
+
final_metrics = {
|
| 256 |
+
'Final Train Acc': history['train_acc'][-1] if history['train_acc'] else 0,
|
| 257 |
+
'Final Train Loss': history['train_loss'][-1] if history['train_loss'] else 0,
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
if 'val_acc' in history and history['val_acc']:
|
| 261 |
+
final_metrics['Final Val Acc'] = history['val_acc'][-1]
|
| 262 |
+
final_metrics['Best Val Acc'] = max(history['val_acc'])
|
| 263 |
+
|
| 264 |
+
metric_names = list(final_metrics.keys())
|
| 265 |
+
metric_values = list(final_metrics.values())
|
| 266 |
+
|
| 267 |
+
fig.add_trace(
|
| 268 |
+
go.Bar(
|
| 269 |
+
x=metric_names,
|
| 270 |
+
y=metric_values,
|
| 271 |
+
marker_color=['lightblue', 'lightcoral', 'lightgreen', 'gold'],
|
| 272 |
+
text=[f'{v:.3f}' for v in metric_values],
|
| 273 |
+
textposition='auto',
|
| 274 |
+
showlegend=False
|
| 275 |
+
),
|
| 276 |
+
row=2, col=2
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
fig.update_layout(
|
| 280 |
+
title='Training History Dashboard',
|
| 281 |
+
height=600,
|
| 282 |
+
showlegend=True
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
fig.update_xaxes(title_text="Epoch", row=1, col=1)
|
| 286 |
+
fig.update_xaxes(title_text="Epoch", row=1, col=2)
|
| 287 |
+
fig.update_xaxes(title_text="Epoch", row=2, col=1)
|
| 288 |
+
fig.update_xaxes(title_text="Metric", tickangle=45, row=2, col=2)
|
| 289 |
+
|
| 290 |
+
fig.update_yaxes(title_text="Loss", row=1, col=1)
|
| 291 |
+
fig.update_yaxes(title_text="Accuracy", range=[0, 1], row=1, col=2)
|
| 292 |
+
fig.update_yaxes(title_text="Learning Rate", type="log", row=2, col=1)
|
| 293 |
+
fig.update_yaxes(title_text="Value", row=2, col=2)
|
| 294 |
+
|
| 295 |
+
return fig
|
| 296 |
+
|
| 297 |
+
except Exception as e:
|
| 298 |
+
logger.error(f"Training history plot error: {e}")
|
| 299 |
+
return GraphVisualizer._create_error_figure(f"Training history plot error: {str(e)}")
|
| 300 |
+
|
| 301 |
+
@staticmethod
|
| 302 |
+
def _create_error_figure(error_message):
|
| 303 |
+
"""Create an error figure with message"""
|
| 304 |
+
fig = go.Figure()
|
| 305 |
+
fig.add_annotation(
|
| 306 |
+
text=error_message,
|
| 307 |
+
x=0.5, y=0.5,
|
| 308 |
+
xref="paper", yref="paper",
|
| 309 |
+
showarrow=False,
|
| 310 |
+
font=dict(size=14, color="red"),
|
| 311 |
+
bgcolor="rgba(255,255,255,0.8)",
|
| 312 |
+
bordercolor="red",
|
| 313 |
+
borderwidth=1
|
| 314 |
+
)
|
| 315 |
+
fig.update_layout(
|
| 316 |
+
title="Visualization Error",
|
| 317 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 318 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 319 |
+
plot_bgcolor='white',
|
| 320 |
+
width=600,
|
| 321 |
+
height=400
|
| 322 |
+
)
|
| 323 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|