kh-CHEUNG's picture
Update app.py
6250640 verified
import numpy as np
import re
import streamlit as st
import torch
from transformers import AutoProcessor, UdopForConditionalGeneration
from PIL import Image, ImageDraw
# from datasets import load_dataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# UDOP uses 501 special loc ("location") tokens
LAYOUT_VOCAB_SIZE = 501
def extract_coordinates(string):
# Using regular expression to find all numbers in the string
numbers = re.findall(r'\d+', string)
# Converting the numbers to integers
numbers = list(map(int, numbers))
# Ensuring there are exactly 4 numbers
if len(numbers) >= 4: #if len(numbers) != 4:
numbers = numbers[-4:]
# Extracting coordinates
x1, y1, x2, y2 = numbers
else:
return []
return [x1, y1, x2, y2]
def unnormalize_box(box, image_width, image_height):
x1 = box[0] / LAYOUT_VOCAB_SIZE * image_width
y1 = box[1] / LAYOUT_VOCAB_SIZE * image_height
x2 = box[2] / LAYOUT_VOCAB_SIZE * image_width
y2 = box[3] / LAYOUT_VOCAB_SIZE * image_height
return [x1, y1, x2, y2]
processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=True)
model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")
st.title("GenAI Demo (by ITT)")
st.text("Upload and Select a document (/an image) to test the model.")
#2 column layout
col1, col2 = st.columns(2)
with col1:
# File selection
uploaded_files = st.file_uploader("Upload document(s) [/image(s)]:", type=["docx", "pdf", "pptx", "jpg", "jpeg", "png"], accept_multiple_files=True, key="fileUpload")
selected_file = st.selectbox("Select a document (/an image):", uploaded_files, format_func=lambda file: file.name if file else "None", key="fileSelect")
# Display selected file
if selected_file is not None and selected_file != "None":
file_extension = selected_file.name.split(".")[-1]
if file_extension in ["jpg", "jpeg", "png"]:
image = Image.open(selected_file).convert("RGB")
st.image(selected_file, caption="Selected Image")
else:
st.write("Selected file: ", selected_file.name)
# Model Testing
with col2:
## Question (/Prompt)
# question = "Question answering. How many unsafe practice of Lifting Operation?"
default_question = "Is this a Lifting Operation scene?"
task_type = st.selectbox("Question Type:", ("Classification", "Question Answering", "Layout Analysis"), index=1, key="taskSelect")
question_text = st.text_area("Prompt:", placeholder=default_question, key="questionInput")
if question_text is not None:
question = task_type + ". " + question_text
else:
question = task_type + ". " + default_question
## Test button
testButton = st.button("Test Model", key="testStart")
## Perform Model Testing when Image is uploaded and selected as well as Test button is pressed
if testButton and selected_file != "None":
st.write("Testing the model with the selected image...")
# encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
model_encoding = processor(images=image, text=question, return_tensors="pt")
model_output = model.generate(**model_encoding)
match task_type:
case "Classification":
output_text = processor.batch_decode(model_output, skip_special_tokens=True)[0]
st.write(output_text)
case "Question Answering":
output_text = processor.batch_decode(model_output, skip_special_tokens=True)[0]
st.write(output_text)
case "Layout Analysis":
output_text = processor.batch_decode(model_output, skip_special_tokens=False)[0]
mean = processor.image_processor.image_mean
std = processor.image_processor.image_std
unnormalized_image = (model_encoding.pixel_values.squeeze().numpy() * np.array(std)[:, None, None]) + np.array(mean)[:, None, None]
unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
unnormalized_image = Image.fromarray(unnormalized_image)
# Get the coordinates from the output text and denormalize them
coordinates = extract_coordinates(output_text)
if coordinates:
coordinates = unnormalize_box(coordinates, unnormalized_image.width, unnormalized_image.height)
draw = ImageDraw.Draw(unnormalized_image)
draw.rectangle(coordinates, outline="red")
st.image(unnormalized_image, caption="Output Image")
else:
st.write("Cannot obtain Bounding Box coordinates: " + output_text)
elif testButton and selected_file == "None":
st.write("Please upload and select a document (/an image).")