File size: 4,464 Bytes
f640140
 
 
 
4e530dd
f640140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e40f75
f640140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf64a07
f640140
5ebbffe
 
 
b4a581e
4e530dd
606c75b
5ebbffe
 
f640140
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import json
import numpy as np
import pandas as pd
import random

import streamlit as st
import torch
import torch.nn.functional as F
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification

@st.cache(allow_output_mutation=True)
def init_model():
    tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')
    model = DistilBertForSequenceClassification.from_pretrained('khizon/distilbert-unreliable-news-eng-4L', num_labels = 2)

    return tokenizer, model

def download_dataset():
    url = 'https://drive.google.com/drive/folders/11mRvsHAkggFEJvG4axH4mmWI6FHMQp7X?usp=sharing'
    data = 'data/nela_gt_2018_site_split'
    
    os.system(f'gdown --folder {url} -O {data}')

@st.cache(allow_output_mutation=True)
def jsonl_to_df(file_path):
    with open(file_path) as f:
        lines = f.read().splitlines()

    df_inter = pd.DataFrame(lines)
    df_inter.columns = ['json_element']

    df_inter['json_element'].apply(json.loads)

    return pd.json_normalize(df_inter['json_element'].apply(json.loads))

@st.cache
def load_test_df():
    file_path = os.path.join('test_sub.jsonl')
    test_df = jsonl_to_df(file_path)
    test_df = pd.get_dummies(test_df, columns = ['label'])
    return test_df

@st.cache(allow_output_mutation=True)
def predict(model, tokenizer, data):
  
    labels = data[['label_0', 'label_1']]
    labels = torch.tensor(labels, dtype=torch.float32)
    encoding = tokenizer.encode_plus(
                data['title'],
                ' [SEP] ' + data['content'],
                add_special_tokens=True,
                max_length = 512,
                return_token_type_ids = False,
                padding = 'max_length',
                truncation = 'only_second',
                return_attention_mask = True,
                return_tensors = 'pt'
            )

    output = model(**encoding)
    return correct_preds(output['logits'], labels)

@st.cache(allow_output_mutation=True)
def predict_new(model, tokenizer, title, content):
    encoding = tokenizer.encode_plus(
                title,
                ' [SEP] ' + content,
                add_special_tokens=True,
                max_length = 512,
                return_token_type_ids = False,
                padding = 'max_length',
                truncation = 'only_second',
                return_attention_mask = True,
                return_tensors = 'pt'
            )
    output = model(**encoding)
    preds = F.softmax(output['logits'], dim = 1)
    p_idx = torch.argmax(preds, dim = 1)
    return 'reliable' if p_idx > 0 else 'unreliable'

def correct_preds(preds, labels):
    preds = torch.nn.functional.softmax(preds, dim = 1)
    p_idx = torch.argmax(preds, dim=1)
    l_idx = torch.argmax(labels, dim=0)

    pred_label = 'reliable' if p_idx > 0 else 'unreliable'
    correct = True if (p_idx == l_idx).sum().item() > 0 else False
    return  pred_label, correct


if __name__ == '__main__':
    df = load_test_df()
    tokenizer, model = init_model()

    st.title("Unreliable News classifier")
    mode = st.radio(
        '', ('Test article', 'Input own article')
    )
    if mode == 'Test article':
        if st.button('Get random article'):
            idx = np.random.randint(0, len(df))
            sample = df.iloc[idx]
            
            prediction, correct = predict(model, tokenizer, sample)
            label = 'reliable' if sample['label_1'] > sample['label_0'] else 'unreliable'
            st.header(sample['title'])
            if correct:
                st.success(f'Prediction: {prediction}')
            else:
                st.error(f'Prediction: {prediction}')

            st.caption(f'Source: {sample["source"]} ({label})')
            # if len(sample['content']) > 300:
            #     sample['content'] = sample['content'][:300]
            temp = []
            for idx, word in enumerate(sample['content'].split()):
                if (random.randint(0, 99)> 45) and idx > 0:
                    word = '▒'*len(word)
                temp.append(word)
            sample['content'] = ' '.join(temp)
            st.markdown(sample['content'])
    else:
        title = st.text_input('Article title', 'Test title')
        content = st.text_area('Article content', 'Lorem ipsum')
        if st.button('Submit'):
            pred = predict_new(model, tokenizer, title, content)
            st.markdown(f'Prediction: {pred}')
            # st.success('success')