import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer import gc import os import datetime import time # --- Configuration --- MODEL_ID = "naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B" MAX_NEW_TOKENS = 512 CPU_THREAD_COUNT = 4 # 필요시 조절 # --- Optional: Set CPU Threads --- # torch.set_num_threads(CPU_THREAD_COUNT) # os.environ["OMP_NUM_THREADS"] = str(CPU_THREAD_COUNT) # os.environ["MKL_NUM_THREADS"] = str(CPU_THREAD_COUNT) print("--- Environment Setup ---") print(f"PyTorch version: {torch.__version__}") print(f"Running on device: cpu") print(f"Torch Threads: {torch.get_num_threads()}") # --- Model and Tokenizer Loading --- print(f"--- Loading Model: {MODEL_ID} ---") print("This might take a few minutes, especially on the first launch...") model = None tokenizer = None load_successful = False stop_token_ids_list = [] # Initialize stop_token_ids_list try: start_load_time = time.time() model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float32, device_map="cpu", # force_download=True # Keep commented unless cache issues reappear ) tokenizer = AutoTokenizer.from_pretrained( MODEL_ID, # force_download=True # Keep commented ) model.eval() load_time = time.time() - start_load_time print(f"--- Model and Tokenizer Loaded Successfully on CPU in {load_time:.2f} seconds ---") load_successful = True # --- Stop Token Configuration --- stop_token_strings = ["<|endofturn|>", "<|stop|>"] temp_stop_ids = [tokenizer.convert_tokens_to_ids(token) for token in stop_token_strings] if tokenizer.eos_token_id is not None and tokenizer.eos_token_id not in temp_stop_ids: temp_stop_ids.append(tokenizer.eos_token_id) elif tokenizer.eos_token_id is None: print("Warning: tokenizer.eos_token_id is None. Cannot add to stop tokens.") stop_token_ids_list = [tid for tid in temp_stop_ids if tid is not None] # Assign to the global scope variable if not stop_token_ids_list: print("Warning: Could not find any stop token IDs. Using default EOS if available, otherwise generation might not stop correctly.") if tokenizer.eos_token_id is not None: stop_token_ids_list = [tokenizer.eos_token_id] else: print("Error: No stop tokens found, including default EOS. Generation may run indefinitely.") # Consider raising an error or setting a default if this is critical print(f"Using Stop Token IDs: {stop_token_ids_list}") except Exception as e: print(f"!!! Error loading model: {e}") if 'model' in locals() and model is not None: del model if 'tokenizer' in locals() and tokenizer is not None: del tokenizer gc.collect() # Raise Gradio error to display in the Space UI if loading fails raise gr.Error(f"Failed to load the model {MODEL_ID}. Cannot start the application. Error: {e}") # --- System Prompt Definition --- def get_system_prompt(): current_date = datetime.datetime.now().strftime("%Y-%m-%d (%A)") return ( f"- AI 언어모델의 이름은 \"CLOVA X\" 이며 네이버에서 만들었다.\n" # f"- 오늘은 {current_date}이다.\n" # Uncomment if needed f"- 사용자의 질문에 대해 친절하고 자세하게 한국어로 답변해야 한다." ) # --- Warm-up Function --- def warmup_model(): if not load_successful or model is None or tokenizer is None: print("Skipping warmup: Model not loaded successfully.") return print("--- Starting Model Warm-up ---") try: start_warmup_time = time.time() warmup_message = "안녕하세요" system_prompt = get_system_prompt() warmup_chat = [ {"role": "tool_list", "content": ""}, {"role": "system", "content": system_prompt}, {"role": "user", "content": warmup_message} ] inputs = tokenizer.apply_chat_template( warmup_chat, add_generation_prompt=True, return_dict=True, return_tensors="pt" ).to("cpu") # Check if stop_token_ids_list is empty and handle appropriately gen_kwargs = { "max_new_tokens": 10, "pad_token_id": tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id, "do_sample": False } if stop_token_ids_list: gen_kwargs["eos_token_id"] = stop_token_ids_list else: print("Warmup Warning: No stop tokens defined for generation.") with torch.no_grad(): output_ids = model.generate(**inputs, **gen_kwargs) # Optional: Decode warmup response for verification # response = tokenizer.decode(output_ids[0, inputs['input_ids'].shape[1]:], skip_special_tokens=True) # print(f"Warm-up response (decoded): {response}") del inputs del output_ids gc.collect() warmup_time = time.time() - start_warmup_time print(f"--- Model Warm-up Completed in {warmup_time:.2f} seconds ---") except Exception as e: print(f"!!! Error during model warm-up: {e}") finally: gc.collect() # --- Inference Function --- def predict(message, history): """ Generates response using HyperCLOVAX. Assumes 'history' is in the Gradio 'messages' format: List[Dict]. """ if model is None or tokenizer is None: return "오류: 모델이 로드되지 않았습니다." system_prompt = get_system_prompt() # Start with system prompt chat_history_formatted = [ {"role": "tool_list", "content": ""}, # As required by model card {"role": "system", "content": system_prompt} ] # Append history (List of {'role': 'user'/'assistant', 'content': '...'}) if isinstance(history, list): # Check if history is a list for turn in history: # Validate turn format if isinstance(turn, dict) and "role" in turn and "content" in turn: chat_history_formatted.append(turn) # Handle potential older tuple format if necessary (though less likely now) elif isinstance(turn, (list, tuple)) and len(turn) == 2: print(f"Warning: Received history item in tuple format: {turn}. Converting to messages format.") chat_history_formatted.append({"role": "user", "content": turn[0]}) if turn[1]: # Ensure assistant message exists chat_history_formatted.append({"role": "assistant", "content": turn[1]}) else: print(f"Warning: Skipping unexpected history format item: {turn}") # Append the latest user message chat_history_formatted.append({"role": "user", "content": message}) inputs = None output_ids = None try: inputs = tokenizer.apply_chat_template( chat_history_formatted, add_generation_prompt=True, return_dict=True, return_tensors="pt" ).to("cpu") input_length = inputs['input_ids'].shape[1] print(f"\nInput tokens: {input_length}") except Exception as e: print(f"!!! Error applying chat template: {e}") return f"오류: 입력 형식을 처리하는 중 문제가 발생했습니다. ({e})" try: print("Generating response...") generation_start_time = time.time() # Prepare generation arguments, handling empty stop_token_ids_list gen_kwargs = { "max_new_tokens": MAX_NEW_TOKENS, "pad_token_id": tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id, "do_sample": True, "temperature": 0.7, "top_p": 0.9, } if stop_token_ids_list: gen_kwargs["eos_token_id"] = stop_token_ids_list else: print("Generation Warning: No stop tokens defined.") with torch.no_grad(): output_ids = model.generate(**inputs, **gen_kwargs) generation_time = time.time() - generation_start_time print(f"Generation complete in {generation_time:.2f} seconds.") except Exception as e: print(f"!!! Error during model generation: {e}") if inputs is not None: del inputs if output_ids is not None: del output_ids gc.collect() return f"오류: 응답을 생성하는 중 문제가 발생했습니다. ({e})" # Decode the response response = "오류: 응답 생성에 실패했습니다." if output_ids is not None: try: new_tokens = output_ids[0, input_length:] response = tokenizer.decode(new_tokens, skip_special_tokens=True) print(f"Output tokens: {len(new_tokens)}") del new_tokens except Exception as e: print(f"!!! Error decoding response: {e}") response = "오류: 응답을 디코딩하는 중 문제가 발생했습니다." # Clean up memory if inputs is not None: del inputs if output_ids is not None: del output_ids gc.collect() print("Memory cleaned.") return response # --- Gradio Interface Setup --- print("--- Setting up Gradio Interface ---") # No need to create a separate Chatbot component beforehand # chatbot_component = gr.Chatbot(...) # REMOVED examples = [ ["네이버 클로바X는 무엇인가요?"], ["슈뢰딩거 방정식과 양자역학의 관계를 설명해주세요."], ["딥러닝 모델 학습 과정을 단계별로 알려줘."], ["제주도 여행 계획을 세우고 있는데, 3박 4일 추천 코스 좀 짜줄래?"], ] # Let ChatInterface manage its own internal Chatbot component # Remove the chatbot=... argument demo = gr.ChatInterface( fn=predict, # Link the prediction function # chatbot=chatbot_component, # REMOVED title="🇰🇷 네이버 HyperCLOVA X SEED (0.5B) 데모", description=( f"**모델:** {MODEL_ID}\n" f"**환경:** Hugging Face 무료 CPU (16GB RAM)\n" f"**주의:** CPU에서 실행되므로 응답 생성에 다소 시간이 걸릴 수 있습니다. (웜업 완료)\n" f"최대 생성 토큰 수는 {MAX_NEW_TOKENS}개로 제한됩니다." ), examples=examples, cache_examples=False, theme="soft", ) # --- Application Launch --- if __name__ == "__main__": if load_successful: warmup_model() else: print("Skipping warm-up because model loading failed.") print("--- Launching Gradio App ---") demo.queue().launch( # share=True # Uncomment for public link # server_name="0.0.0.0" # Uncomment for local network access )