Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,26 +2,20 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging
|
|
| 2 |
from huggingface_hub import login
|
| 3 |
import torch
|
| 4 |
import os
|
|
|
|
| 5 |
|
| 6 |
-
# --- 1. Authentication (
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
-
#
|
| 11 |
-
#
|
| 12 |
-
#
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# Method 2: Direct Token (ONLY for local testing, NOT for deployment)
|
| 17 |
-
# - Replace "YOUR_HUGGING_FACE_TOKEN" with your actual token.
|
| 18 |
-
# - WARNING: Do NOT commit your token to a public repository!
|
| 19 |
-
# login(token="YOUR_HUGGING_FACE_TOKEN")
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
# - Paste your token when prompted.
|
| 24 |
-
# - No code changes are needed after this; the token is stored.
|
| 25 |
|
| 26 |
# --- 2. Model and Tokenizer Setup (with comprehensive error handling) ---
|
| 27 |
|
|
@@ -46,9 +40,10 @@ def load_model_and_tokenizer(model_name="google/gemma-3-1b-it"):
|
|
| 46 |
print("1. Ensure you have a Hugging Face account and have accepted the model's terms.")
|
| 47 |
print("2. Verify your internet connection.")
|
| 48 |
print("3. Double-check the model name: 'google/gemma-3-1b-it'")
|
| 49 |
-
print("4. Ensure you are properly authenticated (see
|
| 50 |
print("5. If using a GPU, ensure your CUDA drivers and PyTorch are correctly installed.")
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
model, tokenizer = load_model_and_tokenizer()
|
| 54 |
|
|
@@ -56,24 +51,13 @@ model, tokenizer = load_model_and_tokenizer()
|
|
| 56 |
# --- 3. Chat Template Function (CRITICAL for conversational models) ---
|
| 57 |
|
| 58 |
def apply_chat_template(messages, tokenizer):
|
| 59 |
-
"""Applies the appropriate chat template
|
| 60 |
-
|
| 61 |
-
Args:
|
| 62 |
-
messages: A list of dictionaries, where each dictionary has 'role' (user/model)
|
| 63 |
-
and 'content' keys.
|
| 64 |
-
tokenizer: The tokenizer object.
|
| 65 |
-
|
| 66 |
-
Returns:
|
| 67 |
-
A formatted prompt string ready for the model.
|
| 68 |
-
"""
|
| 69 |
try:
|
| 70 |
if hasattr(tokenizer, "chat_template") and tokenizer.chat_template:
|
| 71 |
-
# Use the tokenizer's built-in chat template if available
|
| 72 |
return tokenizer.apply_chat_template(
|
| 73 |
messages, tokenize=False, add_generation_prompt=True
|
| 74 |
)
|
| 75 |
else:
|
| 76 |
-
# Fallback to a standard chat template if no specific one is found
|
| 77 |
print("WARNING: Tokenizer does not have a defined chat_template. Using a fallback.")
|
| 78 |
chat_template = "{% for message in messages %}" \
|
| 79 |
"{{ '<start_of_turn>' + message['role'] + '\n' + message['content'] + '<end_of_turn>\n' }}" \
|
|
@@ -83,14 +67,13 @@ def apply_chat_template(messages, tokenizer):
|
|
| 83 |
|
| 84 |
except Exception as e:
|
| 85 |
print(f"ERROR: Failed to apply chat template: {e}")
|
| 86 |
-
|
| 87 |
|
| 88 |
|
| 89 |
# --- 4. Text Generation Function ---
|
| 90 |
|
| 91 |
def generate_response(messages, model, tokenizer, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.2):
|
| 92 |
-
"""Generates a response
|
| 93 |
-
|
| 94 |
prompt = apply_chat_template(messages, tokenizer)
|
| 95 |
|
| 96 |
try:
|
|
@@ -98,8 +81,8 @@ def generate_response(messages, model, tokenizer, max_new_tokens=256, temperatur
|
|
| 98 |
"text-generation",
|
| 99 |
model=model,
|
| 100 |
tokenizer=tokenizer,
|
| 101 |
-
torch_dtype=torch.bfloat16,
|
| 102 |
-
device_map="auto",
|
| 103 |
model_kwargs={"attn_implementation": "flash_attention_2"}
|
| 104 |
)
|
| 105 |
|
|
@@ -111,33 +94,43 @@ def generate_response(messages, model, tokenizer, max_new_tokens=256, temperatur
|
|
| 111 |
top_k=top_k,
|
| 112 |
top_p=top_p,
|
| 113 |
repetition_penalty=repetition_penalty,
|
| 114 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 115 |
)
|
| 116 |
|
| 117 |
-
# Extract *only* the generated text (remove the prompt)
|
| 118 |
generated_text = outputs[0]["generated_text"][len(prompt):].strip()
|
| 119 |
return generated_text
|
| 120 |
|
| 121 |
except Exception as e:
|
| 122 |
print(f"ERROR: Failed to generate response: {e}")
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
messages = [] # Initialize the conversation history
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
-
|
| 138 |
-
response = generate_response(messages, model, tokenizer)
|
| 139 |
-
print(f"Model: {response}")
|
| 140 |
-
messages.append({"role": "model", "content": response})
|
| 141 |
|
| 142 |
-
|
| 143 |
-
main()
|
|
|
|
| 2 |
from huggingface_hub import login
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
+
import gradio as gr
|
| 6 |
|
| 7 |
+
# --- 1. Authentication (Using Environment Variable - the ONLY correct way for Spaces) ---
|
| 8 |
|
| 9 |
+
# Hugging Face Spaces CANNOT use interactive login. You MUST use an environment variable.
|
| 10 |
+
# 1. Go to your Space's settings.
|
| 11 |
+
# 2. Click on "Repository Secrets".
|
| 12 |
+
# 3. Click "New Secret".
|
| 13 |
+
# 4. Name the secret: HUGGING_FACE_HUB_TOKEN
|
| 14 |
+
# 5. Paste your Hugging Face API token (with read access) as the value.
|
| 15 |
+
# 6. Save the secret.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# The login() call below will now automatically use the environment variable.
|
| 18 |
+
login()
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# --- 2. Model and Tokenizer Setup (with comprehensive error handling) ---
|
| 21 |
|
|
|
|
| 40 |
print("1. Ensure you have a Hugging Face account and have accepted the model's terms.")
|
| 41 |
print("2. Verify your internet connection.")
|
| 42 |
print("3. Double-check the model name: 'google/gemma-3-1b-it'")
|
| 43 |
+
print("4. Ensure you are properly authenticated using a Repository Secret (see above).")
|
| 44 |
print("5. If using a GPU, ensure your CUDA drivers and PyTorch are correctly installed.")
|
| 45 |
+
# Instead of exiting, raise the exception to be caught by Gradio
|
| 46 |
+
raise
|
| 47 |
|
| 48 |
model, tokenizer = load_model_and_tokenizer()
|
| 49 |
|
|
|
|
| 51 |
# --- 3. Chat Template Function (CRITICAL for conversational models) ---
|
| 52 |
|
| 53 |
def apply_chat_template(messages, tokenizer):
|
| 54 |
+
"""Applies the appropriate chat template."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
try:
|
| 56 |
if hasattr(tokenizer, "chat_template") and tokenizer.chat_template:
|
|
|
|
| 57 |
return tokenizer.apply_chat_template(
|
| 58 |
messages, tokenize=False, add_generation_prompt=True
|
| 59 |
)
|
| 60 |
else:
|
|
|
|
| 61 |
print("WARNING: Tokenizer does not have a defined chat_template. Using a fallback.")
|
| 62 |
chat_template = "{% for message in messages %}" \
|
| 63 |
"{{ '<start_of_turn>' + message['role'] + '\n' + message['content'] + '<end_of_turn>\n' }}" \
|
|
|
|
| 67 |
|
| 68 |
except Exception as e:
|
| 69 |
print(f"ERROR: Failed to apply chat template: {e}")
|
| 70 |
+
raise # Re-raise to be caught by Gradio
|
| 71 |
|
| 72 |
|
| 73 |
# --- 4. Text Generation Function ---
|
| 74 |
|
| 75 |
def generate_response(messages, model, tokenizer, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.2):
|
| 76 |
+
"""Generates a response."""
|
|
|
|
| 77 |
prompt = apply_chat_template(messages, tokenizer)
|
| 78 |
|
| 79 |
try:
|
|
|
|
| 81 |
"text-generation",
|
| 82 |
model=model,
|
| 83 |
tokenizer=tokenizer,
|
| 84 |
+
torch_dtype=torch.bfloat16,
|
| 85 |
+
device_map="auto",
|
| 86 |
model_kwargs={"attn_implementation": "flash_attention_2"}
|
| 87 |
)
|
| 88 |
|
|
|
|
| 94 |
top_k=top_k,
|
| 95 |
top_p=top_p,
|
| 96 |
repetition_penalty=repetition_penalty,
|
| 97 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 98 |
)
|
| 99 |
|
|
|
|
| 100 |
generated_text = outputs[0]["generated_text"][len(prompt):].strip()
|
| 101 |
return generated_text
|
| 102 |
|
| 103 |
except Exception as e:
|
| 104 |
print(f"ERROR: Failed to generate response: {e}")
|
| 105 |
+
raise # Re-raise the exception
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# --- 5. Gradio Interface ---
|
| 109 |
|
| 110 |
+
def predict(message, history):
|
| 111 |
+
if not history:
|
| 112 |
+
history = []
|
| 113 |
+
messages = []
|
| 114 |
+
for user_msg, bot_response in history:
|
| 115 |
+
messages.append({"role": "user", "content": user_msg})
|
| 116 |
+
if bot_response: # Check if bot_response is not None
|
| 117 |
+
messages.append({"role": "model", "content": bot_response})
|
| 118 |
+
messages.append({"role": "user", "content": message})
|
| 119 |
|
| 120 |
+
try:
|
| 121 |
+
response = generate_response(messages, model, tokenizer)
|
| 122 |
+
history.append((message, response))
|
| 123 |
+
return "", history
|
| 124 |
+
except Exception as e:
|
| 125 |
+
# Catch any exceptions during generation and display in the UI
|
| 126 |
+
return f"Error: {e}", history
|
| 127 |
|
|
|
|
| 128 |
|
| 129 |
+
with gr.Blocks() as demo:
|
| 130 |
+
chatbot = gr.Chatbot(label="Gemma Chatbot", height=500)
|
| 131 |
+
msg = gr.Textbox(placeholder="Ask me anything!", container=False, scale=7)
|
| 132 |
+
clear = gr.ClearButton([msg, chatbot])
|
| 133 |
|
| 134 |
+
msg.submit(predict, [msg, chatbot], [msg, chatbot])
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
demo.launch()
|
|
|