from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging
from huggingface_hub import login
import torch
import os

# --- 1. Authentication (Choose ONE method and follow the instructions) ---

# Method 1: Environment Variable (RECOMMENDED for security and Hugging Face Spaces)
#   - Set the HUGGING_FACE_HUB_TOKEN environment variable *before* running.
#   - Linux/macOS:  `export HUGGING_FACE_HUB_TOKEN=your_token` (in terminal)
#   - Windows (PowerShell):  `$env:HUGGING_FACE_HUB_TOKEN = "your_token"`
#   - Hugging Face Spaces:  Add `HUGGING_FACE_HUB_TOKEN` as a secret in your Space's settings.
#   - Then, uncomment the following line:
login()

# Method 2: Direct Token (ONLY for local testing, NOT for deployment)
#   - Replace "YOUR_HUGGING_FACE_TOKEN" with your actual token.
#   - WARNING:  Do NOT commit your token to a public repository!
# login(token="YOUR_HUGGING_FACE_TOKEN")

# Method 3: huggingface-cli (Interactive, one-time setup, good for local development)
#   - Run `huggingface-cli login` in your terminal.
#   - Paste your token when prompted.
#   - No code changes are needed after this; the token is stored.

# --- 2. Model and Tokenizer Setup (with comprehensive error handling) ---

def load_model_and_tokenizer(model_name="google/gemma-3-1b-it"):
    """Loads the model and tokenizer, handling potential errors."""
    try:
        # Suppress unnecessary warning messages from transformers
        logging.set_verbosity_error()

        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto",  # Automatically use GPU if available, else CPU
            torch_dtype=torch.bfloat16,  # Use bfloat16 for speed/memory if supported
            attn_implementation="flash_attention_2"  # Use Flash Attention 2 if supported
        )
        return model, tokenizer

    except Exception as e:
        print(f"ERROR: Failed to load model or tokenizer: {e}")
        print("\nTroubleshooting Steps:")
        print("1. Ensure you have a Hugging Face account and have accepted the model's terms.")
        print("2. Verify your internet connection.")
        print("3. Double-check the model name: 'google/gemma-3-1b-it'")
        print("4. Ensure you are properly authenticated (see authentication section above).")
        print("5. If using a GPU, ensure your CUDA drivers and PyTorch are correctly installed.")
        exit(1)  # Exit with an error code

model, tokenizer = load_model_and_tokenizer()


# --- 3. Chat Template Function (CRITICAL for conversational models) ---

def apply_chat_template(messages, tokenizer):
    """Applies the appropriate chat template to the message history.

    Args:
        messages: A list of dictionaries, where each dictionary has 'role' (user/model)
            and 'content' keys.
        tokenizer: The tokenizer object.

    Returns:
        A formatted prompt string ready for the model.
    """
    try:
        if hasattr(tokenizer, "chat_template") and tokenizer.chat_template:
            # Use the tokenizer's built-in chat template if available
            return tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )
        else:
            # Fallback to a standard chat template if no specific one is found
            print("WARNING: Tokenizer does not have a defined chat_template. Using a fallback.")
            chat_template = "{% for message in messages %}" \
                            "{{ '<start_of_turn>' + message['role'] + '\n' + message['content'] + '<end_of_turn>\n' }}" \
                            "{% endfor %}" \
                            "{% if add_generation_prompt %}{{ '<start_of_turn>model\n' }}{% endif %}"
            return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, chat_template=chat_template)

    except Exception as e:
        print(f"ERROR: Failed to apply chat template: {e}")
        exit(1)


# --- 4. Text Generation Function ---

def generate_response(messages, model, tokenizer, max_new_tokens=256, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.2):
    """Generates a response using the model and tokenizer."""

    prompt = apply_chat_template(messages, tokenizer)

    try:
        pipeline_instance = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            torch_dtype=torch.bfloat16, # Make sure pipeline also uses correct dtype
            device_map="auto", # and device mapping
            model_kwargs={"attn_implementation": "flash_attention_2"}
            )

        outputs = pipeline_instance(
            prompt,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            pad_token_id=tokenizer.eos_token_id,  # Important for proper padding
        )

        # Extract *only* the generated text (remove the prompt)
        generated_text = outputs[0]["generated_text"][len(prompt):].strip()
        return generated_text

    except Exception as e:
        print(f"ERROR: Failed to generate response: {e}")
        return "Sorry, I encountered an error while generating a response."


# --- 5. Main Interaction Loop (for command-line interaction) ---
def main():
    """Main function for interactive command-line chat."""

    messages = []  # Initialize the conversation history

    while True:
        user_input = input("You: ")
        if user_input.lower() in ("exit", "quit", "bye"):
            break

        messages.append({"role": "user", "content": user_input})
        response = generate_response(messages, model, tokenizer)
        print(f"Model: {response}")
        messages.append({"role": "model", "content": response})

if __name__ == "__main__":
    main()