Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer, GemmaTokenizer | |
import torch | |
import os | |
import gradio as gr | |
try: | |
# ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ ๋ก๋ | |
model_id = "kimhyunwoo/gemma2-ko-dialogue-lora-fp16" | |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True) | |
# AutoTokenizer ๋์ ์ง์ GemmaTokenizer๋ฅผ ๋ก๋ํฉ๋๋ค. | |
tokenizer = GemmaTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
# CPU ํ๊ฒฝ์์ ๋ชจ๋ธ์ ๋ก๋ํ๊ณ ์ฌ์ฉํ๋ ๊ฒฝ์ฐ torch.float32๋ฅผ ๋ช ์์ ์ผ๋ก ์ฌ์ฉํ ์ ์์ต๋๋ค. | |
model = model.to(torch.float32) | |
model.eval() | |
# ํ ์คํธ ์์ฑ ํจ์ | |
def generate_text(text, max_length=50, do_sample=True, temperature=1.0): | |
inputs = tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_length=max_length, do_sample=do_sample, temperature=temperature) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
# Gradio ์ธํฐํ์ด์ค ์์ฑ | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=5, placeholder="ํ ์คํธ๋ฅผ ์ ๋ ฅํ์ธ์..."), | |
gr.Slider(minimum=10, maximum=200, step=1, value=50, label="์ต๋ ๊ธธ์ด"), | |
gr.Checkbox(label="์ํ๋ง"), | |
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="์จ๋"), | |
], | |
outputs=gr.Textbox(lines=5, label="์์ฑ๋ ํ ์คํธ"), | |
title="Gemma 2 Text Generator", | |
description="Fine-tuned๋ Gemma 2 ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ํ ์คํธ๋ฅผ ์์ฑํฉ๋๋ค.", | |
) | |
if __name__ == "__main__": | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |
except ImportError as e: | |
print(f"ImportError ๋ฐ์: {e}") | |
except Exception as e: | |
print(f"์์์น ๋ชปํ ์ค๋ฅ ๋ฐ์: {e}") |