kingabzpro commited on
Commit
4e705bc
·
verified ·
1 Parent(s): d9b1a68

Sync App files

Browse files
Files changed (1) hide show
  1. app.py +218 -0
app.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ import pandas as pd
6
+ import skops.io as sio
7
+
8
+
9
+ class StockPredictor:
10
+ """
11
+ A class used to load stock prediction models, process historical stock data,
12
+ and forecast stock prices.
13
+
14
+ Attributes
15
+ ----------
16
+ model_dir : str
17
+ Directory containing the trained models.
18
+ data_dir : str
19
+ Directory containing the historical stock data CSV files.
20
+ models : dict
21
+ Dictionary of loaded models.
22
+
23
+ Methods
24
+ -------
25
+ load_models(model_dir):
26
+ Loads the models from the specified directory.
27
+ load_stock_data(ticker):
28
+ Loads and processes historical stock data from a CSV file.
29
+ forecast(ticker, days):
30
+ Forecasts stock prices for the specified ticker and number of days.
31
+ """
32
+
33
+ def __init__(self, model_dir="model/SKLearn_Models", data_dir="data"):
34
+ """
35
+ Initializes the StockPredictor class by loading the models and setting the data directory.
36
+
37
+ Parameters
38
+ ----------
39
+ model_dir : str
40
+ Directory containing the trained models.
41
+ data_dir : str
42
+ Directory containing the historical stock data CSV files.
43
+ """
44
+ self.models = self.load_models(model_dir)
45
+ self.data_dir = data_dir
46
+
47
+ def load_models(self, model_dir):
48
+ """
49
+ Loads the models from the specified directory.
50
+
51
+ Parameters
52
+ ----------
53
+ model_dir : str
54
+ Directory containing the trained models.
55
+
56
+ Returns
57
+ -------
58
+ dict
59
+ Dictionary of loaded models.
60
+ """
61
+ models = {}
62
+ for file in os.listdir(model_dir):
63
+ if file.endswith(".skops"):
64
+ ticker = file.split("_")[0]
65
+ models[ticker] = sio.load(os.path.join(model_dir, file))
66
+ return models
67
+
68
+ def load_stock_data(self, ticker):
69
+ """
70
+ Loads and processes historical stock data from a CSV file.
71
+
72
+ Parameters
73
+ ----------
74
+ ticker : str
75
+ Stock ticker symbol.
76
+
77
+ Returns
78
+ -------
79
+ pandas.DataFrame
80
+ Processed historical stock data.
81
+ """
82
+ # Construct the CSV file path
83
+ csv_path = os.path.join(self.data_dir, f"{ticker}.csv")
84
+ data = pd.read_csv(csv_path)
85
+
86
+ # Convert 'date' to datetime
87
+ data["date"] = pd.to_datetime(data["date"])
88
+
89
+ # Filter the data to start from the year 2000
90
+ data = data[data["date"] >= "2000-01-01"]
91
+
92
+ # Sort by date
93
+ data.sort_values("date", inplace=True)
94
+
95
+ # Feature engineering: create new features such as moving averages
96
+ data["ma_5"] = data["close"].rolling(window=5).mean()
97
+ data["ma_10"] = data["close"].rolling(window=10).mean()
98
+
99
+ # Drop rows with NaN values created by rolling window
100
+ data.dropna(inplace=True)
101
+
102
+ return data
103
+
104
+ def forecast(self, ticker, days):
105
+ """
106
+ Forecasts stock prices for the specified ticker and number of days.
107
+
108
+ Parameters
109
+ ----------
110
+ ticker : str
111
+ Stock ticker symbol.
112
+ days : int
113
+ Number of days for forecasting.
114
+
115
+ Returns
116
+ -------
117
+ tuple
118
+ A tuple containing a DataFrame with dates, actual close values, and predicted close values,
119
+ and the file path of the generated plot.
120
+ """
121
+ model = self.models.get(ticker)
122
+ if model:
123
+ # Load historical stock data
124
+ data = self.load_stock_data(ticker)
125
+
126
+ # Take the last 'days' worth of data for prediction
127
+ data = data.tail(days)
128
+
129
+ # Define features
130
+ features = ["open", "high", "low", "ma_5", "ma_10"]
131
+
132
+ X = data[features]
133
+
134
+ # Make predictions
135
+ predictions = model.predict(X)
136
+
137
+ # Round predictions to 2 decimal places
138
+ predictions = np.round(predictions, 2)
139
+
140
+ # Create a DataFrame with dates and predicted close values
141
+ result_df = pd.DataFrame(
142
+ {
143
+ "date": data["date"],
144
+ "actual_close": data["close"],
145
+ "predicted_close": predictions,
146
+ }
147
+ )
148
+
149
+ # Plot the actual and predicted close values
150
+ plt.figure(figsize=(10, 5))
151
+ plt.plot(result_df["date"], result_df["actual_close"], label="Actual Close")
152
+ plt.plot(
153
+ result_df["date"], result_df["predicted_close"], label="Predicted Close"
154
+ )
155
+ plt.xlabel("Date")
156
+ plt.ylabel("Close Price")
157
+ plt.title(f"{ticker} Stock Price Prediction")
158
+ plt.legend()
159
+ plt.grid(True)
160
+ plt.xticks(rotation=45)
161
+
162
+ # Save the plot to a file
163
+ plot_path = f"{ticker}_prediction_plot.png"
164
+ plt.savefig(plot_path)
165
+ plt.close()
166
+
167
+ return result_df, plot_path
168
+ else:
169
+ return pd.DataFrame({"Error": ["Model not found"]}), None
170
+
171
+
172
+ def create_gradio_interface(stock_predictor):
173
+ """
174
+ Creates the Gradio interface for the stock predictor.
175
+
176
+ Parameters
177
+ ----------
178
+ stock_predictor : StockPredictor
179
+ Instance of the StockPredictor class.
180
+
181
+ Returns
182
+ -------
183
+ gradio.Interface
184
+ The Gradio interface.
185
+ """
186
+ tickers = list(stock_predictor.models.keys())
187
+ dropdown = gr.Dropdown(choices=tickers, label="Select Ticker")
188
+ slider = gr.Slider(
189
+ minimum=1,
190
+ maximum=30,
191
+ step=1,
192
+ label="Number of Days for Forecasting",
193
+ )
194
+
195
+ iface = gr.Interface(
196
+ fn=stock_predictor.forecast,
197
+ inputs=[dropdown, slider],
198
+ outputs=[
199
+ gr.DataFrame(headers=["date", "actual_close", "predicted_close"]),
200
+ gr.Image(),
201
+ ],
202
+ title="Stock Price Forecasting",
203
+ description="Select a ticker and number of days to forecast stock prices.",
204
+ )
205
+
206
+ return iface
207
+
208
+
209
+ if __name__ == "__main__":
210
+ # Initialize StockPredictor and create Gradio interface
211
+ stock_predictor = StockPredictor(
212
+ model_dir="model/SKLearn_Models",
213
+ data_dir="data/Cleaned_Kaggle_NASDAQ_Daily_Data",
214
+ )
215
+ iface = create_gradio_interface(stock_predictor)
216
+
217
+ # Launch the app
218
+ iface.launch()