Spaces:
Sleeping
Sleeping
Sync App files
Browse files
app.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import skops.io as sio
|
7 |
+
|
8 |
+
|
9 |
+
class StockPredictor:
|
10 |
+
"""
|
11 |
+
A class used to load stock prediction models, process historical stock data,
|
12 |
+
and forecast stock prices.
|
13 |
+
|
14 |
+
Attributes
|
15 |
+
----------
|
16 |
+
model_dir : str
|
17 |
+
Directory containing the trained models.
|
18 |
+
data_dir : str
|
19 |
+
Directory containing the historical stock data CSV files.
|
20 |
+
models : dict
|
21 |
+
Dictionary of loaded models.
|
22 |
+
|
23 |
+
Methods
|
24 |
+
-------
|
25 |
+
load_models(model_dir):
|
26 |
+
Loads the models from the specified directory.
|
27 |
+
load_stock_data(ticker):
|
28 |
+
Loads and processes historical stock data from a CSV file.
|
29 |
+
forecast(ticker, days):
|
30 |
+
Forecasts stock prices for the specified ticker and number of days.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(self, model_dir="model/SKLearn_Models", data_dir="data"):
|
34 |
+
"""
|
35 |
+
Initializes the StockPredictor class by loading the models and setting the data directory.
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
----------
|
39 |
+
model_dir : str
|
40 |
+
Directory containing the trained models.
|
41 |
+
data_dir : str
|
42 |
+
Directory containing the historical stock data CSV files.
|
43 |
+
"""
|
44 |
+
self.models = self.load_models(model_dir)
|
45 |
+
self.data_dir = data_dir
|
46 |
+
|
47 |
+
def load_models(self, model_dir):
|
48 |
+
"""
|
49 |
+
Loads the models from the specified directory.
|
50 |
+
|
51 |
+
Parameters
|
52 |
+
----------
|
53 |
+
model_dir : str
|
54 |
+
Directory containing the trained models.
|
55 |
+
|
56 |
+
Returns
|
57 |
+
-------
|
58 |
+
dict
|
59 |
+
Dictionary of loaded models.
|
60 |
+
"""
|
61 |
+
models = {}
|
62 |
+
for file in os.listdir(model_dir):
|
63 |
+
if file.endswith(".skops"):
|
64 |
+
ticker = file.split("_")[0]
|
65 |
+
models[ticker] = sio.load(os.path.join(model_dir, file))
|
66 |
+
return models
|
67 |
+
|
68 |
+
def load_stock_data(self, ticker):
|
69 |
+
"""
|
70 |
+
Loads and processes historical stock data from a CSV file.
|
71 |
+
|
72 |
+
Parameters
|
73 |
+
----------
|
74 |
+
ticker : str
|
75 |
+
Stock ticker symbol.
|
76 |
+
|
77 |
+
Returns
|
78 |
+
-------
|
79 |
+
pandas.DataFrame
|
80 |
+
Processed historical stock data.
|
81 |
+
"""
|
82 |
+
# Construct the CSV file path
|
83 |
+
csv_path = os.path.join(self.data_dir, f"{ticker}.csv")
|
84 |
+
data = pd.read_csv(csv_path)
|
85 |
+
|
86 |
+
# Convert 'date' to datetime
|
87 |
+
data["date"] = pd.to_datetime(data["date"])
|
88 |
+
|
89 |
+
# Filter the data to start from the year 2000
|
90 |
+
data = data[data["date"] >= "2000-01-01"]
|
91 |
+
|
92 |
+
# Sort by date
|
93 |
+
data.sort_values("date", inplace=True)
|
94 |
+
|
95 |
+
# Feature engineering: create new features such as moving averages
|
96 |
+
data["ma_5"] = data["close"].rolling(window=5).mean()
|
97 |
+
data["ma_10"] = data["close"].rolling(window=10).mean()
|
98 |
+
|
99 |
+
# Drop rows with NaN values created by rolling window
|
100 |
+
data.dropna(inplace=True)
|
101 |
+
|
102 |
+
return data
|
103 |
+
|
104 |
+
def forecast(self, ticker, days):
|
105 |
+
"""
|
106 |
+
Forecasts stock prices for the specified ticker and number of days.
|
107 |
+
|
108 |
+
Parameters
|
109 |
+
----------
|
110 |
+
ticker : str
|
111 |
+
Stock ticker symbol.
|
112 |
+
days : int
|
113 |
+
Number of days for forecasting.
|
114 |
+
|
115 |
+
Returns
|
116 |
+
-------
|
117 |
+
tuple
|
118 |
+
A tuple containing a DataFrame with dates, actual close values, and predicted close values,
|
119 |
+
and the file path of the generated plot.
|
120 |
+
"""
|
121 |
+
model = self.models.get(ticker)
|
122 |
+
if model:
|
123 |
+
# Load historical stock data
|
124 |
+
data = self.load_stock_data(ticker)
|
125 |
+
|
126 |
+
# Take the last 'days' worth of data for prediction
|
127 |
+
data = data.tail(days)
|
128 |
+
|
129 |
+
# Define features
|
130 |
+
features = ["open", "high", "low", "ma_5", "ma_10"]
|
131 |
+
|
132 |
+
X = data[features]
|
133 |
+
|
134 |
+
# Make predictions
|
135 |
+
predictions = model.predict(X)
|
136 |
+
|
137 |
+
# Round predictions to 2 decimal places
|
138 |
+
predictions = np.round(predictions, 2)
|
139 |
+
|
140 |
+
# Create a DataFrame with dates and predicted close values
|
141 |
+
result_df = pd.DataFrame(
|
142 |
+
{
|
143 |
+
"date": data["date"],
|
144 |
+
"actual_close": data["close"],
|
145 |
+
"predicted_close": predictions,
|
146 |
+
}
|
147 |
+
)
|
148 |
+
|
149 |
+
# Plot the actual and predicted close values
|
150 |
+
plt.figure(figsize=(10, 5))
|
151 |
+
plt.plot(result_df["date"], result_df["actual_close"], label="Actual Close")
|
152 |
+
plt.plot(
|
153 |
+
result_df["date"], result_df["predicted_close"], label="Predicted Close"
|
154 |
+
)
|
155 |
+
plt.xlabel("Date")
|
156 |
+
plt.ylabel("Close Price")
|
157 |
+
plt.title(f"{ticker} Stock Price Prediction")
|
158 |
+
plt.legend()
|
159 |
+
plt.grid(True)
|
160 |
+
plt.xticks(rotation=45)
|
161 |
+
|
162 |
+
# Save the plot to a file
|
163 |
+
plot_path = f"{ticker}_prediction_plot.png"
|
164 |
+
plt.savefig(plot_path)
|
165 |
+
plt.close()
|
166 |
+
|
167 |
+
return result_df, plot_path
|
168 |
+
else:
|
169 |
+
return pd.DataFrame({"Error": ["Model not found"]}), None
|
170 |
+
|
171 |
+
|
172 |
+
def create_gradio_interface(stock_predictor):
|
173 |
+
"""
|
174 |
+
Creates the Gradio interface for the stock predictor.
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
----------
|
178 |
+
stock_predictor : StockPredictor
|
179 |
+
Instance of the StockPredictor class.
|
180 |
+
|
181 |
+
Returns
|
182 |
+
-------
|
183 |
+
gradio.Interface
|
184 |
+
The Gradio interface.
|
185 |
+
"""
|
186 |
+
tickers = list(stock_predictor.models.keys())
|
187 |
+
dropdown = gr.Dropdown(choices=tickers, label="Select Ticker")
|
188 |
+
slider = gr.Slider(
|
189 |
+
minimum=1,
|
190 |
+
maximum=30,
|
191 |
+
step=1,
|
192 |
+
label="Number of Days for Forecasting",
|
193 |
+
)
|
194 |
+
|
195 |
+
iface = gr.Interface(
|
196 |
+
fn=stock_predictor.forecast,
|
197 |
+
inputs=[dropdown, slider],
|
198 |
+
outputs=[
|
199 |
+
gr.DataFrame(headers=["date", "actual_close", "predicted_close"]),
|
200 |
+
gr.Image(),
|
201 |
+
],
|
202 |
+
title="Stock Price Forecasting",
|
203 |
+
description="Select a ticker and number of days to forecast stock prices.",
|
204 |
+
)
|
205 |
+
|
206 |
+
return iface
|
207 |
+
|
208 |
+
|
209 |
+
if __name__ == "__main__":
|
210 |
+
# Initialize StockPredictor and create Gradio interface
|
211 |
+
stock_predictor = StockPredictor(
|
212 |
+
model_dir="model/SKLearn_Models",
|
213 |
+
data_dir="data/Cleaned_Kaggle_NASDAQ_Daily_Data",
|
214 |
+
)
|
215 |
+
iface = create_gradio_interface(stock_predictor)
|
216 |
+
|
217 |
+
# Launch the app
|
218 |
+
iface.launch()
|