import numpy as np
import gradio as gr
title = "SavtaDepth WebApp"
description = "
Monocular Depth Estimation - Turn 2d photos into 3d photos"
article = "SavtaDepth Project from OperationSavta
Google Colab Demo
"
examples = [
["examples/00008.jpg"],
["examples/00045.jpg"],
]
def sepia(input_img):
sepia_filter = np.array(
[[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]
)
sepia_img = input_img.dot(sepia_filter.T)
sepia_img /= sepia_img.max()
return sepia_img
iface = gr.Interface(sepia, gr.inputs.Image(shape=(200, 200)), "image", title = title, description = description, article = article, examples = examples)
iface.launch(enable_queue=True) # auth=("admin", "pass1234")