Spaces:
Sleeping
Sleeping
Kevin King
commited on
Commit
·
555549c
1
Parent(s):
4b260d9
Refactor Streamlit app to support video uploads for emotion analysis and enhance audio processing capabilities
Browse files- requirements.txt +18 -4
- src/streamlit_app.py +145 -31
requirements.txt
CHANGED
@@ -1,12 +1,26 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
2 |
|
3 |
-
#
|
4 |
streamlit==1.35.0
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
7 |
openai-whisper==20231117
|
|
|
|
|
|
|
|
|
8 |
torch==2.7.0
|
9 |
torchaudio==2.7.0
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
2 |
|
3 |
+
# Pin the main UI components to recent, stable versions
|
4 |
streamlit==1.35.0
|
5 |
|
6 |
+
# Library for video/audio file handling
|
7 |
+
moviepy==1.0.3
|
8 |
+
|
9 |
+
# Pin ML/AI libraries to modern, known-good versions
|
10 |
+
transformers==4.40.1
|
11 |
+
deepface==0.0.94
|
12 |
openai-whisper==20231117
|
13 |
+
|
14 |
+
# Pin frameworks to ensure CPU versions and prevent build timeouts
|
15 |
+
tensorflow-cpu==2.16.1
|
16 |
+
tf-keras==2.16.0
|
17 |
torch==2.7.0
|
18 |
torchaudio==2.7.0
|
19 |
|
20 |
+
# Pin data/audio libraries for stability
|
21 |
+
pandas==2.2.2
|
22 |
+
numpy==1.26.4
|
23 |
+
soundfile==0.12.1
|
24 |
+
librosa==0.10.1
|
25 |
+
scipy==1.13.0
|
26 |
+
Pillow==10.3.0
|
src/streamlit_app.py
CHANGED
@@ -1,60 +1,174 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
|
|
3 |
import whisper
|
4 |
-
import
|
|
|
5 |
import logging
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
os.environ['HF_HOME'] = '/tmp/huggingface'
|
10 |
|
11 |
# --- Page Configuration ---
|
12 |
st.set_page_config(
|
13 |
-
page_title="
|
14 |
-
page_icon="
|
15 |
-
layout="
|
16 |
)
|
17 |
|
18 |
-
st.title("
|
19 |
-
st.write("Upload a short
|
20 |
|
21 |
# --- Logger Configuration ---
|
22 |
logging.basicConfig(level=logging.INFO)
|
|
|
23 |
logging.getLogger('huggingface_hub').setLevel(logging.WARNING)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# --- Model Loading ---
|
26 |
@st.cache_resource
|
27 |
-
def
|
28 |
-
with st.spinner("Loading
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
|
|
35 |
|
36 |
# --- UI and Processing Logic ---
|
37 |
-
uploaded_file = st.file_uploader("Choose
|
38 |
|
39 |
if uploaded_file is not None:
|
40 |
# Save the uploaded file to a temporary location
|
41 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=
|
42 |
tfile.write(uploaded_file.read())
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# Clean up the temporary file
|
60 |
-
os.unlink(temp_audio_path)
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
import whisper
|
6 |
+
from transformers import pipeline, AutoModelForAudioClassification, AutoFeatureExtractor
|
7 |
+
from deepface import DeepFace
|
8 |
import logging
|
9 |
+
import soundfile as sf
|
10 |
+
import tempfile
|
11 |
+
from PIL import Image
|
12 |
+
import cv2
|
13 |
+
from moviepy.editor import VideoFileClip
|
14 |
|
15 |
+
# Set home directories for model caching to the writable /tmp folder
|
16 |
+
os.environ['DEEPFACE_HOME'] = '/tmp/.deepface'
|
17 |
os.environ['HF_HOME'] = '/tmp/huggingface'
|
18 |
|
19 |
# --- Page Configuration ---
|
20 |
st.set_page_config(
|
21 |
+
page_title="AffectLink Demo",
|
22 |
+
page_icon="😊",
|
23 |
+
layout="wide"
|
24 |
)
|
25 |
|
26 |
+
st.title("AffectLink: Post-Hoc Emotion Analysis")
|
27 |
+
st.write("Upload a short video clip (under 30 seconds) to analyze facial expressions, speech-to-text, and the emotional tone of the audio.")
|
28 |
|
29 |
# --- Logger Configuration ---
|
30 |
logging.basicConfig(level=logging.INFO)
|
31 |
+
logging.getLogger('deepface').setLevel(logging.ERROR)
|
32 |
logging.getLogger('huggingface_hub').setLevel(logging.WARNING)
|
33 |
+
logging.getLogger('moviepy').setLevel(logging.ERROR)
|
34 |
+
|
35 |
+
# --- Emotion Mappings ---
|
36 |
+
UNIFIED_EMOTIONS = ['neutral', 'happy', 'sad', 'angry']
|
37 |
+
TEXT_TO_UNIFIED = {
|
38 |
+
'neutral': 'neutral', 'joy': 'happy', 'sadness': 'sad', 'anger': 'angry',
|
39 |
+
'fear': None, 'surprise': None, 'disgust': None
|
40 |
+
}
|
41 |
+
SER_TO_UNIFIED = {
|
42 |
+
'neu': 'neutral', 'hap': 'happy', 'sad': 'sad', 'ang': 'angry'
|
43 |
+
}
|
44 |
+
AUDIO_SAMPLE_RATE = 16000
|
45 |
|
46 |
# --- Model Loading ---
|
47 |
@st.cache_resource
|
48 |
+
def load_models():
|
49 |
+
with st.spinner("Loading AI models, this may take a moment..."):
|
50 |
+
whisper_model = whisper.load_model("base", download_root="/tmp/whisper_cache")
|
51 |
+
text_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None)
|
52 |
+
ser_model_name = "superb/hubert-large-superb-er"
|
53 |
+
ser_feature_extractor = AutoFeatureExtractor.from_pretrained(ser_model_name)
|
54 |
+
ser_model = AutoModelForAudioClassification.from_pretrained(ser_model_name)
|
55 |
+
# DeepFace loads its own models on first use, no need to preload here.
|
56 |
+
return whisper_model, text_classifier, ser_model, ser_feature_extractor
|
57 |
|
58 |
+
whisper_model, text_classifier, ser_model, ser_feature_extractor = load_models()
|
59 |
|
60 |
# --- UI and Processing Logic ---
|
61 |
+
uploaded_file = st.file_uploader("Choose a video file...", type=["mp4", "mov", "avi", "mkv"])
|
62 |
|
63 |
if uploaded_file is not None:
|
64 |
# Save the uploaded file to a temporary location
|
65 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tfile:
|
66 |
tfile.write(uploaded_file.read())
|
67 |
+
temp_video_path = tfile.name
|
68 |
+
|
69 |
+
st.video(temp_video_path)
|
70 |
+
|
71 |
+
if st.button("Analyze Video"):
|
72 |
+
facial_analysis_results = []
|
73 |
+
audio_analysis_results = {}
|
74 |
+
|
75 |
+
# --- Video Processing for Facial Emotion ---
|
76 |
+
with st.spinner("Analyzing video for facial expressions... (1 frame per second)"):
|
77 |
+
try:
|
78 |
+
cap = cv2.VideoCapture(temp_video_path)
|
79 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
80 |
+
if fps == 0:
|
81 |
+
fps = 30 # Default to 30 fps if not available
|
82 |
+
frame_count = 0
|
83 |
+
while cap.isOpened():
|
84 |
+
ret, frame = cap.read()
|
85 |
+
if not ret:
|
86 |
+
break
|
87 |
+
|
88 |
+
if frame_count % int(fps) == 0:
|
89 |
+
timestamp = frame_count / fps
|
90 |
+
analysis = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False, silent=True)
|
91 |
+
if isinstance(analysis, list) and len(analysis) > 0:
|
92 |
+
dominant_emotion = analysis[0]['dominant_emotion']
|
93 |
+
facial_analysis_results.append((timestamp, dominant_emotion.capitalize()))
|
94 |
+
frame_count += 1
|
95 |
+
cap.release()
|
96 |
+
except Exception as e:
|
97 |
+
st.error(f"An error occurred during facial analysis: {e}")
|
98 |
+
|
99 |
+
# --- Audio Extraction and Processing ---
|
100 |
+
with st.spinner("Extracting and analyzing audio..."):
|
101 |
+
temp_audio_path = None
|
102 |
+
video_clip = None
|
103 |
+
try:
|
104 |
+
video_clip = VideoFileClip(temp_video_path)
|
105 |
+
if video_clip.audio is not None:
|
106 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as taudio:
|
107 |
+
video_clip.audio.write_audiofile(taudio.name, fps=AUDIO_SAMPLE_RATE, logger=None)
|
108 |
+
temp_audio_path = taudio.name
|
109 |
+
|
110 |
+
# 1. Speech-to-Text (Whisper)
|
111 |
+
result = whisper_model.transcribe(temp_audio_path, fp16=False)
|
112 |
+
transcribed_text = result['text'] if result['text'] else "No speech detected."
|
113 |
+
audio_analysis_results['Transcription'] = transcribed_text
|
114 |
+
|
115 |
+
# 2. Text-based Emotion
|
116 |
+
if "No speech detected" not in transcribed_text:
|
117 |
+
text_emotions = text_classifier(transcribed_text)[0]
|
118 |
+
unified_text_scores = {e: 0.0 for e in UNIFIED_EMOTIONS}
|
119 |
+
for emo in text_emotions:
|
120 |
+
unified_emo = TEXT_TO_UNIFIED.get(emo['label'])
|
121 |
+
if unified_emo:
|
122 |
+
unified_text_scores[unified_emo] += emo['score']
|
123 |
+
dominant_text_emotion = max(unified_text_scores, key=unified_text_scores.get)
|
124 |
+
audio_analysis_results['Text Emotion'] = dominant_text_emotion.capitalize()
|
125 |
+
|
126 |
+
# 3. Speech Emotion Recognition (SER)
|
127 |
+
audio_array, _ = sf.read(temp_audio_path)
|
128 |
+
inputs = ser_feature_extractor(audio_array, sampling_rate=AUDIO_SAMPLE_RATE, return_tensors="pt", padding=True)
|
129 |
+
with torch.no_grad():
|
130 |
+
logits = ser_model(**inputs).logits
|
131 |
+
scores = torch.nn.functional.softmax(logits, dim=1).squeeze()
|
132 |
+
unified_ser_scores = {e: 0.0 for e in UNIFIED_EMOTIONS}
|
133 |
+
for i, score in enumerate(scores):
|
134 |
+
raw_emo = ser_model.config.id2label[i]
|
135 |
+
unified_emo = SER_TO_UNIFIED.get(raw_emo)
|
136 |
+
if unified_emo:
|
137 |
+
unified_ser_scores[unified_emo] += score.item()
|
138 |
+
dominant_ser_emotion = max(unified_ser_scores, key=unified_ser_scores.get)
|
139 |
+
audio_analysis_results['Speech Emotion'] = dominant_ser_emotion.capitalize()
|
140 |
+
else:
|
141 |
+
audio_analysis_results['Transcription'] = "No audio track found in the video."
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
st.error(f"An error occurred during audio analysis: {e}")
|
145 |
+
finally:
|
146 |
+
if video_clip:
|
147 |
+
video_clip.close()
|
148 |
+
if temp_audio_path and os.path.exists(temp_audio_path):
|
149 |
+
os.unlink(temp_audio_path)
|
150 |
|
151 |
+
# --- Display Results ---
|
152 |
+
st.header("Analysis Results")
|
153 |
+
col1, col2 = st.columns(2)
|
154 |
|
155 |
+
with col1:
|
156 |
+
st.subheader("Audio Analysis")
|
157 |
+
if audio_analysis_results:
|
158 |
+
st.write(f"**Transcription:** \"{audio_analysis_results.get('Transcription', 'N/A')}\"")
|
159 |
+
st.metric("Emotion from Text", audio_analysis_results.get('Text Emotion', 'N/A'))
|
160 |
+
st.metric("Emotion from Speech", audio_analysis_results.get('Speech Emotion', 'N/A'))
|
161 |
+
else:
|
162 |
+
st.write("No audio results to display.")
|
163 |
|
164 |
+
with col2:
|
165 |
+
st.subheader("Facial Expression Timeline")
|
166 |
+
if facial_analysis_results:
|
167 |
+
for timestamp, emotion in facial_analysis_results:
|
168 |
+
st.write(f"**Time {int(timestamp // 60):02d}:{int(timestamp % 60):02d}:** {emotion}")
|
169 |
+
else:
|
170 |
+
st.write("No faces detected or video processing failed.")
|
171 |
|
172 |
+
# Clean up temp video file after analysis is done
|
173 |
+
if os.path.exists(temp_video_path):
|
174 |
+
os.unlink(temp_video_path)
|
|
|
|