Spaces:
Runtime error
Runtime error
# Ultralytics YOLO π, GPL-3.0 license | |
from copy import copy | |
import hydra | |
import torch | |
import torch.nn as nn | |
from ultralytics.nn.tasks import DetectionModel | |
from ultralytics.yolo import v8 | |
from ultralytics.yolo.data import build_dataloader | |
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader | |
from ultralytics.yolo.engine.trainer import BaseTrainer | |
from ultralytics.yolo.utils import DEFAULT_CONFIG, colorstr | |
from ultralytics.yolo.utils.loss import BboxLoss | |
from ultralytics.yolo.utils.ops import xywh2xyxy | |
from ultralytics.yolo.utils.plotting import plot_images, plot_results | |
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors | |
from ultralytics.yolo.utils.torch_utils import de_parallel | |
# BaseTrainer python usage | |
class DetectionTrainer(BaseTrainer): | |
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0): | |
# TODO: manage splits differently | |
# calculate stride - check if model is initialized | |
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) | |
return create_dataloader(path=dataset_path, | |
imgsz=self.args.imgsz, | |
batch_size=batch_size, | |
stride=gs, | |
hyp=dict(self.args), | |
augment=mode == "train", | |
cache=self.args.cache, | |
pad=0 if mode == "train" else 0.5, | |
rect=self.args.rect, | |
rank=rank, | |
workers=self.args.workers, | |
close_mosaic=self.args.close_mosaic != 0, | |
prefix=colorstr(f'{mode}: '), | |
shuffle=mode == "train", | |
seed=self.args.seed)[0] if self.args.v5loader else \ | |
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0] | |
def preprocess_batch(self, batch): | |
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 | |
return batch | |
def set_model_attributes(self): | |
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps) | |
self.args.box *= 3 / nl # scale to layers | |
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers | |
self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers | |
self.model.nc = self.data["nc"] # attach number of classes to model | |
self.model.args = self.args # attach hyperparameters to model | |
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc | |
self.model.names = self.data["names"] | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
model = DetectionModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose) | |
if weights: | |
model.load(weights) | |
return model | |
def get_validator(self): | |
self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss' | |
return v8.detect.DetectionValidator(self.test_loader, | |
save_dir=self.save_dir, | |
logger=self.console, | |
args=copy(self.args)) | |
def criterion(self, preds, batch): | |
if not hasattr(self, 'compute_loss'): | |
self.compute_loss = Loss(de_parallel(self.model)) | |
return self.compute_loss(preds, batch) | |
def label_loss_items(self, loss_items=None, prefix="train"): | |
""" | |
Returns a loss dict with labelled training loss items tensor | |
""" | |
# Not needed for classification but necessary for segmentation & detection | |
keys = [f"{prefix}/{x}" for x in self.loss_names] | |
if loss_items is not None: | |
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats | |
return dict(zip(keys, loss_items)) | |
else: | |
return keys | |
def progress_string(self): | |
return ('\n' + '%11s' * | |
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size') | |
def plot_training_samples(self, batch, ni): | |
plot_images(images=batch["img"], | |
batch_idx=batch["batch_idx"], | |
cls=batch["cls"].squeeze(-1), | |
bboxes=batch["bboxes"], | |
paths=batch["im_file"], | |
fname=self.save_dir / f"train_batch{ni}.jpg") | |
def plot_metrics(self): | |
plot_results(file=self.csv) # save results.png | |
# Criterion class for computing training losses | |
class Loss: | |
def __init__(self, model): # model must be de-paralleled | |
device = next(model.parameters()).device # get model device | |
h = model.args # hyperparameters | |
m = model.model[-1] # Detect() module | |
self.bce = nn.BCEWithLogitsLoss(reduction='none') | |
self.hyp = h | |
self.stride = m.stride # model strides | |
self.nc = m.nc # number of classes | |
self.no = m.no | |
self.reg_max = m.reg_max | |
self.device = device | |
self.use_dfl = m.reg_max > 1 | |
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0) | |
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device) | |
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device) | |
def preprocess(self, targets, batch_size, scale_tensor): | |
if targets.shape[0] == 0: | |
out = torch.zeros(batch_size, 0, 5, device=self.device) | |
else: | |
i = targets[:, 0] # image index | |
_, counts = i.unique(return_counts=True) | |
out = torch.zeros(batch_size, counts.max(), 5, device=self.device) | |
for j in range(batch_size): | |
matches = i == j | |
n = matches.sum() | |
if n: | |
out[j, :n] = targets[matches, 1:] | |
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor)) | |
return out | |
def bbox_decode(self, anchor_points, pred_dist): | |
if self.use_dfl: | |
b, a, c = pred_dist.shape # batch, anchors, channels | |
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype)) | |
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype)) | |
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2) | |
return dist2bbox(pred_dist, anchor_points, xywh=False) | |
def __call__(self, preds, batch): | |
loss = torch.zeros(3, device=self.device) # box, cls, dfl | |
feats = preds[1] if isinstance(preds, tuple) else preds | |
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( | |
(self.reg_max * 4, self.nc), 1) | |
pred_scores = pred_scores.permute(0, 2, 1).contiguous() | |
pred_distri = pred_distri.permute(0, 2, 1).contiguous() | |
dtype = pred_scores.dtype | |
batch_size = pred_scores.shape[0] | |
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) | |
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) | |
# targets | |
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1) | |
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) | |
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy | |
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0) | |
# pboxes | |
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) | |
_, target_bboxes, target_scores, fg_mask, _ = self.assigner( | |
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), | |
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt) | |
target_bboxes /= stride_tensor | |
target_scores_sum = target_scores.sum() | |
# cls loss | |
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way | |
loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE | |
# bbox loss | |
if fg_mask.sum(): | |
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, | |
target_scores_sum, fg_mask) | |
loss[0] *= self.hyp.box # box gain | |
loss[1] *= self.hyp.cls # cls gain | |
loss[2] *= self.hyp.dfl # dfl gain | |
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) | |
def train(cfg): | |
cfg.model = cfg.model or "yolov8n.yaml" | |
cfg.data = cfg.data or "coco128.yaml" # or yolo.ClassificationDataset("mnist") | |
# trainer = DetectionTrainer(cfg) | |
# trainer.train() | |
from ultralytics import YOLO | |
model = YOLO(cfg.model) | |
model.train(**cfg) | |
if __name__ == "__main__": | |
""" | |
CLI usage: | |
python ultralytics/yolo/v8/detect/train.py model=yolov8n.yaml data=coco128 epochs=100 imgsz=640 | |
TODO: | |
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100 | |
""" | |
train() | |