import pandas as pd import streamlit as st import numpy as np import threading import torch import numpy as np from styling import footer from transformers import AutoTokenizer, AutoModelWithLMHead from huggingface_hub import HfApi, hf_hub_download from torch.utils.data import Dataset, DataLoader st.set_page_config( page_title="Koya Recommendation System", initial_sidebar_state="auto", ) st.markdown( """ # Koya Recommeder System #### 👋 Welcome to the to the Koya recommendation system. This system recommeds an LLM for you when you provide a sample sentence in your target language and select a list of models. You can try it below \n\n\n""" ) @st.cache def get_model_infos(multilingual="multilingual"): api = HfApi() model_infos = api.list_models(filter=["fill-mask", multilingual], cardData=True) data = [["id", "task", "lang", "sha"]] count = 0 for model in model_infos: try: data.append( [ model.modelId, model.pipeline_tag, model.cardData["language"], model.sha, ] ) except: data.append([model.modelId, model.pipeline_tag, None, model.sha]) df = pd.DataFrame.from_records(data[1:], columns=data[0]) return df class MLMDataset(Dataset): def __init__(self, sentence, tokenizer, MLM_MASK_TOKEN, MLM_UNK_TOKEN): self.sentence = sentence self.tokenizer = tokenizer self.tensor_input = self.tokenizer(sentence, return_tensors="pt")["input_ids"] self.num_samples = self.tensor_input.size()[-1] - 2 self.batch_input = self.tensor_input.repeat(self.num_samples, 1) self.random_ids = np.random.choice( [i for i in range(1, self.tensor_input.size(1) - 1)], self.num_samples, replace=False, ) # ensuring that the masking is not done on the BOS and EOS tokens since they are not connected to the sentence itself. self.random_ids = torch.Tensor(self.random_ids).long().unsqueeze(0).T # Added by Chris Emezue on 29.01.2023 # Add a term called unk_mask, such that p(w|...) is 0 if w is unk and p(w|...) otherwise unk_mask = torch.ones( self.batch_input.size()[0], self.batch_input.size()[1], self.tokenizer.vocab_size, ) batch_input_for_unk = self.batch_input.unsqueeze(-1).expand(unk_mask.size()) self.unk_mask = unk_mask.masked_fill(batch_input_for_unk == MLM_UNK_TOKEN, 0) self.mask = torch.zeros(self.batch_input.size()) src = torch.ones(self.batch_input.size(0)).unsqueeze(0).T self.mask.scatter_(1, self.random_ids, src) self.masked_input = self.batch_input.masked_fill(self.mask == 1, MLM_MASK_TOKEN) self.labels = self.batch_input.masked_fill( self.masked_input != MLM_MASK_TOKEN, -100 ) # If logits change when labels is not set to -100: # If we are using the logits, this does not change it then. but if are using the loss, # then this has an effect. assert ( self.masked_input.shape[0] == self.labels.shape[0] == self.mask.shape[0] == self.unk_mask.shape[0] ) def __len__(self): return self.masked_input.shape[0] def __getitem__(self, idx): return ( self.masked_input[idx], self.mask[idx], self.labels[idx], self.unk_mask[idx], ) def get_sense_score_batched( sentence, tokenizer, model, MLM_MASK_TOKEN, MLM_UNK_TOKEN, BATCH_SIZE ): mlm_dataset = MLMDataset(sentence, tokenizer, MLM_MASK_TOKEN, MLM_UNK_TOKEN) dataloader = DataLoader(mlm_dataset, batch_size=BATCH_SIZE) score = 1 for i, batch in enumerate(dataloader): masked_input, mask, labels, unk_mask = batch output = model(masked_input, labels=labels) logits_ = output["logits"] logits = ( logits_ * unk_mask ) # Penalizing the unk tokens by setting their probs to zero indices = torch.nonzero(mask) logits_of_interest = logits[indices[:, 0], indices[:, 1], :] labels_of_interest = labels[indices[:, 0], indices[:, 1]] log_probs = logits_of_interest.gather(1, labels_of_interest.view(-1, 1)) batch_score = ( (log_probs.sum() / (-1 * mlm_dataset.num_samples)).exp().item() ) # exp(x+y) = exp(x)*exp(y) score *= batch_score return score def get_sense_score( sentence, tokenizer, model, MLM_MASK_TOKEN, MLM_UNK_TOKEN, num_samples ): """ IDEA ----------------- PP = perplexity(P) where perplexity(P) function just computes: (p_1*p_*p_3*...*p_N)^(-1/N) for p_i in P In practice you need to do the computation in log space to avoid underflow: e^-((log(p_1) + log(p_2) + ... + log(p_N)) / N) Note: everytime you run this function, the results change slightly (but the ordering should be relatively the same), because the tokens to mask are chosen randomly. """ tensor_input = tokenizer(sentence, return_tensors="pt")["input_ids"] batch_input = tensor_input.repeat(num_samples, 1) random_ids = np.random.choice( [i for i in range(1, tensor_input.size(1) - 1)], num_samples, replace=False ) # ensuring that the masking is not done on the BOS and EOS tokens since they are not connected to the sentence itself. random_ids = torch.Tensor(random_ids).long().unsqueeze(0).T # Added by Chris Emezue on 29.01.2023 # Add a term called unk_mask, such that p(w|...) is 0 if w is unk and p(w|...) otherwise unk_mask = torch.ones( batch_input.size()[0], batch_input.size()[1], tokenizer.vocab_size ) batch_input_for_unk = batch_input.unsqueeze(-1).expand(unk_mask.size()) unk_mask = unk_mask.masked_fill(batch_input_for_unk == MLM_UNK_TOKEN, 0) mask = torch.zeros(batch_input.size()) src = torch.ones(batch_input.size(0)).unsqueeze(0).T mask.scatter_(1, random_ids, src) masked_input = batch_input.masked_fill(mask == 1, MLM_MASK_TOKEN) labels = batch_input.masked_fill(masked_input != MLM_MASK_TOKEN, -100) # If logits change when labels is not set to -100: # If we are using the logits, this does not change it then. but if are using the loss, # then this has an effect. output = model(masked_input, labels=labels) logits_ = output["logits"] logits = ( logits_ * unk_mask ) # Penalizing the unk tokens by setting their probs to zero indices = torch.nonzero(mask) logits_of_interest = logits[indices[:, 0], indices[:, 1], :] labels_of_interest = labels[indices[:, 0], indices[:, 1]] log_probs = logits_of_interest.gather(1, labels_of_interest.view(-1, 1)) score = (log_probs.sum() / (-1 * num_samples)).exp().item() return score def sort_dictionary(dict): keys = list(dict.keys()) values = list(dict.values()) sorted_value_index = np.argsort(values) sorted_dict = {keys[i]: values[i] for i in sorted_value_index} return sorted_dict def set_seed(): np.random.seed(2023) torch.manual_seed(2023) with st.sidebar: st.image("Koya_Presentation-removebg-preview.png") st.subheader("Abstract") st.markdown( """