Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -182,243 +182,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
182 |
return status_message, results_df
|
183 |
|
184 |
|
185 |
-
# --- Build Gradio Interface using Blocks ---
|
186 |
-
with gr.Blocks() as demo:
|
187 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
188 |
-
gr.Markdown(
|
189 |
-
"""
|
190 |
-
**Instructions:**
|
191 |
-
|
192 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
193 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
194 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
195 |
-
|
196 |
-
---
|
197 |
-
**Disclaimers:**
|
198 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
199 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
200 |
-
"""
|
201 |
-
)
|
202 |
-
|
203 |
-
gr.LoginButton()
|
204 |
-
|
205 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
206 |
-
|
207 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
208 |
-
# Removed max_rows=10 from DataFrame constructor
|
209 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
210 |
-
|
211 |
-
run_button.click(
|
212 |
-
fn=run_and_submit_all,
|
213 |
-
outputs=[status_output, results_table]
|
214 |
-
)
|
215 |
-
|
216 |
-
if __name__ == "__main__":
|
217 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
218 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
219 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
220 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
221 |
-
|
222 |
-
if space_host_startup:
|
223 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
224 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
225 |
-
else:
|
226 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
227 |
-
|
228 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
229 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
230 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
231 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
232 |
-
else:
|
233 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
234 |
-
|
235 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
236 |
-
|
237 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
238 |
-
demo.launch(debug=True, share=False)import os
|
239 |
-
import gradio as gr
|
240 |
-
import requests
|
241 |
-
import inspect
|
242 |
-
import pandas as pd
|
243 |
-
from langchain_core.messages import HumanMessage
|
244 |
-
|
245 |
-
from langgraph_agent import react_agent
|
246 |
-
|
247 |
-
|
248 |
-
# (Keep Constants as is)
|
249 |
-
# --- Constants ---
|
250 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
251 |
-
|
252 |
-
# --- Basic Agent Definition ---
|
253 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
254 |
-
class BasicAgent:
|
255 |
-
def __init__(self):
|
256 |
-
print("BasicAgent initialized.")
|
257 |
-
def __call__(self, question: str, file_path: str) -> str:
|
258 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
259 |
-
config = {"configurable": {}}
|
260 |
-
if file_path:
|
261 |
-
config = {"configurable": {"file_path": file_path}}
|
262 |
-
messages = [HumanMessage(content=f"{question}")]
|
263 |
-
agent_response = react_agent.invoke({"messages": messages}, config=config, debug=True)
|
264 |
-
agent_response = agent_response["messages"][-1].content
|
265 |
-
agent_response = agent_response.strip()
|
266 |
-
print(f"Agent returning fixed answer: {agent_response}")
|
267 |
-
return agent_response
|
268 |
-
|
269 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
270 |
-
"""
|
271 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
272 |
-
and displays the results.
|
273 |
-
"""
|
274 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
275 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
276 |
-
|
277 |
-
if profile:
|
278 |
-
username= f"{profile.username}"
|
279 |
-
print(f"User logged in: {username}")
|
280 |
-
else:
|
281 |
-
print("User not logged in.")
|
282 |
-
return "Please Login to Hugging Face with the button.", None
|
283 |
-
|
284 |
-
api_url = DEFAULT_API_URL
|
285 |
-
questions_url = f"{api_url}/questions"
|
286 |
-
submit_url = f"{api_url}/submit"
|
287 |
-
file_url = f"{api_url}/files"
|
288 |
-
|
289 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
290 |
-
try:
|
291 |
-
agent = BasicAgent()
|
292 |
-
except Exception as e:
|
293 |
-
print(f"Error instantiating agent: {e}")
|
294 |
-
return f"Error initializing agent: {e}", None
|
295 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
296 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
297 |
-
print(agent_code)
|
298 |
-
|
299 |
-
# 2. Fetch Questions
|
300 |
-
print(f"Fetching questions from: {questions_url}")
|
301 |
-
try:
|
302 |
-
response = requests.get(questions_url, timeout=15)
|
303 |
-
response.raise_for_status()
|
304 |
-
questions_data = response.json()
|
305 |
-
if not questions_data:
|
306 |
-
print("Fetched questions list is empty.")
|
307 |
-
return "Fetched questions list is empty or invalid format.", None
|
308 |
-
print(f"Fetched {len(questions_data)} questions.")
|
309 |
-
except requests.exceptions.RequestException as e:
|
310 |
-
print(f"Error fetching questions: {e}")
|
311 |
-
return f"Error fetching questions: {e}", None
|
312 |
-
except requests.exceptions.JSONDecodeError as e:
|
313 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
314 |
-
print(f"Response text: {response.text[:500]}")
|
315 |
-
return f"Error decoding server response for questions: {e}", None
|
316 |
-
except Exception as e:
|
317 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
318 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
319 |
-
|
320 |
-
# 3. Run your Agent
|
321 |
-
results_log = []
|
322 |
-
answers_payload = []
|
323 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
324 |
-
for item in questions_data:
|
325 |
-
task_id = item.get("task_id")
|
326 |
-
question_text = item.get("question")
|
327 |
-
file_name = item.get("file_name")
|
328 |
-
|
329 |
-
file_path = None # Ensure file_path is always defined
|
330 |
-
|
331 |
-
if file_name:
|
332 |
-
# Ensure the documents directory exists
|
333 |
-
documents_dir = "documents"
|
334 |
-
os.makedirs(documents_dir, exist_ok=True)
|
335 |
-
|
336 |
-
# Clear the documents directory
|
337 |
-
for file in os.listdir(documents_dir):
|
338 |
-
file_path = os.path.join(documents_dir, file)
|
339 |
-
if os.path.isfile(file_path):
|
340 |
-
os.remove(file_path)
|
341 |
-
|
342 |
-
# Download the file
|
343 |
-
file_download_url = f"{file_url}/{task_id}"
|
344 |
-
try:
|
345 |
-
file_response = requests.get(file_download_url, timeout=15)
|
346 |
-
file_response.raise_for_status()
|
347 |
-
file_path = os.path.join(documents_dir, file_name)
|
348 |
-
with open(file_path, "wb") as f:
|
349 |
-
f.write(file_response.content)
|
350 |
-
print(f"File downloaded and saved to: {file_path}")
|
351 |
-
except requests.exceptions.RequestException as e:
|
352 |
-
print(f"Error downloading file for task {task_id}: {e}")
|
353 |
-
continue
|
354 |
-
|
355 |
-
question_text += f" (File Name: {file_name})"
|
356 |
-
|
357 |
-
|
358 |
-
if not task_id or question_text is None:
|
359 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
360 |
-
continue
|
361 |
-
try:
|
362 |
-
submitted_answer = agent(question_text, file_path)
|
363 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
364 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
365 |
-
except Exception as e:
|
366 |
-
print(f"Error running agent on task {task_id}: {e}")
|
367 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
368 |
-
|
369 |
-
if not answers_payload:
|
370 |
-
print("Agent did not produce any answers to submit.")
|
371 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
372 |
-
|
373 |
-
# 4. Prepare Submission
|
374 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
375 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
376 |
-
print(status_update)
|
377 |
-
|
378 |
-
# 5. Submit
|
379 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
380 |
-
try:
|
381 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
382 |
-
response.raise_for_status()
|
383 |
-
result_data = response.json()
|
384 |
-
final_status = (
|
385 |
-
f"Submission Successful!\n"
|
386 |
-
f"User: {result_data.get('username')}\n"
|
387 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
388 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
389 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
390 |
-
)
|
391 |
-
print("Submission successful.")
|
392 |
-
results_df = pd.DataFrame(results_log)
|
393 |
-
return final_status, results_df
|
394 |
-
except requests.exceptions.HTTPError as e:
|
395 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
396 |
-
try:
|
397 |
-
error_json = e.response.json()
|
398 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
399 |
-
except requests.exceptions.JSONDecodeError:
|
400 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
401 |
-
status_message = f"Submission Failed: {error_detail}"
|
402 |
-
print(status_message)
|
403 |
-
results_df = pd.DataFrame(results_log)
|
404 |
-
return status_message, results_df
|
405 |
-
except requests.exceptions.Timeout:
|
406 |
-
status_message = "Submission Failed: The request timed out."
|
407 |
-
print(status_message)
|
408 |
-
results_df = pd.DataFrame(results_log)
|
409 |
-
return status_message, results_df
|
410 |
-
except requests.exceptions.RequestException as e:
|
411 |
-
status_message = f"Submission Failed: Network error - {e}"
|
412 |
-
print(status_message)
|
413 |
-
results_df = pd.DataFrame(results_log)
|
414 |
-
return status_message, results_df
|
415 |
-
except Exception as e:
|
416 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
417 |
-
print(status_message)
|
418 |
-
results_df = pd.DataFrame(results_log)
|
419 |
-
return status_message, results_df
|
420 |
-
|
421 |
-
|
422 |
# --- Build Gradio Interface using Blocks ---
|
423 |
with gr.Blocks() as demo:
|
424 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
182 |
return status_message, results_df
|
183 |
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
# --- Build Gradio Interface using Blocks ---
|
186 |
with gr.Blocks() as demo:
|
187 |
gr.Markdown("# Basic Agent Evaluation Runner")
|