devasurya commited on
Commit
3402e3c
·
verified ·
1 Parent(s): b642c9c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -237
app.py CHANGED
@@ -182,243 +182,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
182
  return status_message, results_df
183
 
184
 
185
- # --- Build Gradio Interface using Blocks ---
186
- with gr.Blocks() as demo:
187
- gr.Markdown("# Basic Agent Evaluation Runner")
188
- gr.Markdown(
189
- """
190
- **Instructions:**
191
-
192
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
193
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
194
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
195
-
196
- ---
197
- **Disclaimers:**
198
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
199
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
200
- """
201
- )
202
-
203
- gr.LoginButton()
204
-
205
- run_button = gr.Button("Run Evaluation & Submit All Answers")
206
-
207
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
208
- # Removed max_rows=10 from DataFrame constructor
209
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
210
-
211
- run_button.click(
212
- fn=run_and_submit_all,
213
- outputs=[status_output, results_table]
214
- )
215
-
216
- if __name__ == "__main__":
217
- print("\n" + "-"*30 + " App Starting " + "-"*30)
218
- # Check for SPACE_HOST and SPACE_ID at startup for information
219
- space_host_startup = os.getenv("SPACE_HOST")
220
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
221
-
222
- if space_host_startup:
223
- print(f"✅ SPACE_HOST found: {space_host_startup}")
224
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
225
- else:
226
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
227
-
228
- if space_id_startup: # Print repo URLs if SPACE_ID is found
229
- print(f"✅ SPACE_ID found: {space_id_startup}")
230
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
231
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
232
- else:
233
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
234
-
235
- print("-"*(60 + len(" App Starting ")) + "\n")
236
-
237
- print("Launching Gradio Interface for Basic Agent Evaluation...")
238
- demo.launch(debug=True, share=False)import os
239
- import gradio as gr
240
- import requests
241
- import inspect
242
- import pandas as pd
243
- from langchain_core.messages import HumanMessage
244
-
245
- from langgraph_agent import react_agent
246
-
247
-
248
- # (Keep Constants as is)
249
- # --- Constants ---
250
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
251
-
252
- # --- Basic Agent Definition ---
253
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
254
- class BasicAgent:
255
- def __init__(self):
256
- print("BasicAgent initialized.")
257
- def __call__(self, question: str, file_path: str) -> str:
258
- print(f"Agent received question (first 50 chars): {question[:50]}...")
259
- config = {"configurable": {}}
260
- if file_path:
261
- config = {"configurable": {"file_path": file_path}}
262
- messages = [HumanMessage(content=f"{question}")]
263
- agent_response = react_agent.invoke({"messages": messages}, config=config, debug=True)
264
- agent_response = agent_response["messages"][-1].content
265
- agent_response = agent_response.strip()
266
- print(f"Agent returning fixed answer: {agent_response}")
267
- return agent_response
268
-
269
- def run_and_submit_all( profile: gr.OAuthProfile | None):
270
- """
271
- Fetches all questions, runs the BasicAgent on them, submits all answers,
272
- and displays the results.
273
- """
274
- # --- Determine HF Space Runtime URL and Repo URL ---
275
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
276
-
277
- if profile:
278
- username= f"{profile.username}"
279
- print(f"User logged in: {username}")
280
- else:
281
- print("User not logged in.")
282
- return "Please Login to Hugging Face with the button.", None
283
-
284
- api_url = DEFAULT_API_URL
285
- questions_url = f"{api_url}/questions"
286
- submit_url = f"{api_url}/submit"
287
- file_url = f"{api_url}/files"
288
-
289
- # 1. Instantiate Agent ( modify this part to create your agent)
290
- try:
291
- agent = BasicAgent()
292
- except Exception as e:
293
- print(f"Error instantiating agent: {e}")
294
- return f"Error initializing agent: {e}", None
295
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
296
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
297
- print(agent_code)
298
-
299
- # 2. Fetch Questions
300
- print(f"Fetching questions from: {questions_url}")
301
- try:
302
- response = requests.get(questions_url, timeout=15)
303
- response.raise_for_status()
304
- questions_data = response.json()
305
- if not questions_data:
306
- print("Fetched questions list is empty.")
307
- return "Fetched questions list is empty or invalid format.", None
308
- print(f"Fetched {len(questions_data)} questions.")
309
- except requests.exceptions.RequestException as e:
310
- print(f"Error fetching questions: {e}")
311
- return f"Error fetching questions: {e}", None
312
- except requests.exceptions.JSONDecodeError as e:
313
- print(f"Error decoding JSON response from questions endpoint: {e}")
314
- print(f"Response text: {response.text[:500]}")
315
- return f"Error decoding server response for questions: {e}", None
316
- except Exception as e:
317
- print(f"An unexpected error occurred fetching questions: {e}")
318
- return f"An unexpected error occurred fetching questions: {e}", None
319
-
320
- # 3. Run your Agent
321
- results_log = []
322
- answers_payload = []
323
- print(f"Running agent on {len(questions_data)} questions...")
324
- for item in questions_data:
325
- task_id = item.get("task_id")
326
- question_text = item.get("question")
327
- file_name = item.get("file_name")
328
-
329
- file_path = None # Ensure file_path is always defined
330
-
331
- if file_name:
332
- # Ensure the documents directory exists
333
- documents_dir = "documents"
334
- os.makedirs(documents_dir, exist_ok=True)
335
-
336
- # Clear the documents directory
337
- for file in os.listdir(documents_dir):
338
- file_path = os.path.join(documents_dir, file)
339
- if os.path.isfile(file_path):
340
- os.remove(file_path)
341
-
342
- # Download the file
343
- file_download_url = f"{file_url}/{task_id}"
344
- try:
345
- file_response = requests.get(file_download_url, timeout=15)
346
- file_response.raise_for_status()
347
- file_path = os.path.join(documents_dir, file_name)
348
- with open(file_path, "wb") as f:
349
- f.write(file_response.content)
350
- print(f"File downloaded and saved to: {file_path}")
351
- except requests.exceptions.RequestException as e:
352
- print(f"Error downloading file for task {task_id}: {e}")
353
- continue
354
-
355
- question_text += f" (File Name: {file_name})"
356
-
357
-
358
- if not task_id or question_text is None:
359
- print(f"Skipping item with missing task_id or question: {item}")
360
- continue
361
- try:
362
- submitted_answer = agent(question_text, file_path)
363
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
364
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
365
- except Exception as e:
366
- print(f"Error running agent on task {task_id}: {e}")
367
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
368
-
369
- if not answers_payload:
370
- print("Agent did not produce any answers to submit.")
371
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
372
-
373
- # 4. Prepare Submission
374
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
375
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
376
- print(status_update)
377
-
378
- # 5. Submit
379
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
380
- try:
381
- response = requests.post(submit_url, json=submission_data, timeout=60)
382
- response.raise_for_status()
383
- result_data = response.json()
384
- final_status = (
385
- f"Submission Successful!\n"
386
- f"User: {result_data.get('username')}\n"
387
- f"Overall Score: {result_data.get('score', 'N/A')}% "
388
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
389
- f"Message: {result_data.get('message', 'No message received.')}"
390
- )
391
- print("Submission successful.")
392
- results_df = pd.DataFrame(results_log)
393
- return final_status, results_df
394
- except requests.exceptions.HTTPError as e:
395
- error_detail = f"Server responded with status {e.response.status_code}."
396
- try:
397
- error_json = e.response.json()
398
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
399
- except requests.exceptions.JSONDecodeError:
400
- error_detail += f" Response: {e.response.text[:500]}"
401
- status_message = f"Submission Failed: {error_detail}"
402
- print(status_message)
403
- results_df = pd.DataFrame(results_log)
404
- return status_message, results_df
405
- except requests.exceptions.Timeout:
406
- status_message = "Submission Failed: The request timed out."
407
- print(status_message)
408
- results_df = pd.DataFrame(results_log)
409
- return status_message, results_df
410
- except requests.exceptions.RequestException as e:
411
- status_message = f"Submission Failed: Network error - {e}"
412
- print(status_message)
413
- results_df = pd.DataFrame(results_log)
414
- return status_message, results_df
415
- except Exception as e:
416
- status_message = f"An unexpected error occurred during submission: {e}"
417
- print(status_message)
418
- results_df = pd.DataFrame(results_log)
419
- return status_message, results_df
420
-
421
-
422
  # --- Build Gradio Interface using Blocks ---
423
  with gr.Blocks() as demo:
424
  gr.Markdown("# Basic Agent Evaluation Runner")
 
182
  return status_message, results_df
183
 
184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  # --- Build Gradio Interface using Blocks ---
186
  with gr.Blocks() as demo:
187
  gr.Markdown("# Basic Agent Evaluation Runner")