Spaces:
Running
Running
fix (export): Minor fix to export with additional notebook to merge.
Browse files- notebooks/merge_input_files.ipynb +208 -0
- notebooks/validate_input_file.ipynb +487 -0
- src/processor.ts +31 -7
- src/types.ts +1 -0
- src/utilities/objects.ts +32 -1
notebooks/merge_input_files.ipynb
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {
|
7 |
+
"collapsed": true,
|
8 |
+
"pycharm": {
|
9 |
+
"name": "#%% md\n"
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"source": [
|
13 |
+
"# Merge input files\n",
|
14 |
+
"\n",
|
15 |
+
"### ✅ Prerequisites\n",
|
16 |
+
"\n",
|
17 |
+
"[Python 3.10](https://www.python.org/downloads/)\n"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {},
|
23 |
+
"source": [
|
24 |
+
"> [!CAUTION]\n",
|
25 |
+
"> Please make sure all input files are valid before trying to merge them. You can check validity of each file with a [`validate_input_file`](./validate_input_file.ipynb) notebook.\n",
|
26 |
+
"\n",
|
27 |
+
"\n",
|
28 |
+
"> [!IMPORTANT]\n",
|
29 |
+
"> Only common `tasks` across all input files and associated documents, models and evaluations are preserved in the resultant file.\n",
|
30 |
+
"\n",
|
31 |
+
"### Merge function"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 13,
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"from typing import Dict, Set\n",
|
41 |
+
"import json\n",
|
42 |
+
"\n",
|
43 |
+
"\n",
|
44 |
+
"# =========================================================\n",
|
45 |
+
"# HELPER FUNCTIONS\n",
|
46 |
+
"# =========================================================\n",
|
47 |
+
"def read_json(filename: str, encoding=\"utf-8\"):\n",
|
48 |
+
" with open(filename, mode=\"r\", encoding=encoding) as fp:\n",
|
49 |
+
" return json.load(fp)\n",
|
50 |
+
"\n",
|
51 |
+
"\n",
|
52 |
+
"def write_json(filename: str, content: dict, encoding=\"utf-8\"):\n",
|
53 |
+
" with open(filename, mode=\"w\", encoding=encoding) as fp:\n",
|
54 |
+
" return json.dump(content, fp)\n",
|
55 |
+
"\n",
|
56 |
+
"\n",
|
57 |
+
"# =========================================================\n",
|
58 |
+
"# MAIN FUNCTION\n",
|
59 |
+
"# =========================================================\n",
|
60 |
+
"def merge(inputs: list[dict]) -> dict:\n",
|
61 |
+
" # Step 1: Return, if single JSON\n",
|
62 |
+
" if len(inputs) == 1:\n",
|
63 |
+
" return inputs[0]\n",
|
64 |
+
"\n",
|
65 |
+
" # Step 2: When multiple input JSONs\n",
|
66 |
+
" # Step 2.a: Initialize necessary variables\n",
|
67 |
+
" merged_tasks: Dict[str, dict] = {}\n",
|
68 |
+
" tasks_to_models: Dict[str, Set[str]] = {}\n",
|
69 |
+
" evaluations: Dict[str, dict] = {}\n",
|
70 |
+
" all_models = {}\n",
|
71 |
+
" all_filters = set()\n",
|
72 |
+
"\n",
|
73 |
+
" # Step 2.b: Iterate over each input JSON\n",
|
74 |
+
" for entry in inputs:\n",
|
75 |
+
" # Step 2.b.i: Add model to dictionary of all models, if not present already\n",
|
76 |
+
" for model in entry[\"models\"]:\n",
|
77 |
+
" if model[\"model_id\"] in all_models:\n",
|
78 |
+
" if model[\"name\"] != all_models[model[\"model_id\"]][\"name\"]:\n",
|
79 |
+
" print(\n",
|
80 |
+
" f\"Mismatched model information for model with id: ${model['model_id']}\"\n",
|
81 |
+
" )\n",
|
82 |
+
" else:\n",
|
83 |
+
" all_models[model[\"model_id\"]] = model\n",
|
84 |
+
"\n",
|
85 |
+
" # Step 2.b.ii: Add filters to set of all filter\n",
|
86 |
+
" if \"filters\" in entry and entry[\"filters\"]:\n",
|
87 |
+
" for filter in entry[\"filters\"]:\n",
|
88 |
+
" all_filters.add(filter)\n",
|
89 |
+
"\n",
|
90 |
+
" # Step 2.b.iii: Iterate over each evaluation\n",
|
91 |
+
" for evaluation in entry[\"evaluations\"]:\n",
|
92 |
+
" # Step 2.b.iii.*: Extend map of task IDs to model IDs based on evaluations\n",
|
93 |
+
" try:\n",
|
94 |
+
" tasks_to_models[evaluation[\"task_id\"]].add(evaluation[\"model_id\"])\n",
|
95 |
+
" except KeyError:\n",
|
96 |
+
" tasks_to_models[evaluation[\"task_id\"]] = set([evaluation[\"model_id\"]])\n",
|
97 |
+
"\n",
|
98 |
+
" # Step 2.b.iii.*: Extend evaluations map, if necessary\n",
|
99 |
+
" if (\n",
|
100 |
+
" f\"{evaluation['task_id']}<:SEP:>{evaluation['model_id']}\"\n",
|
101 |
+
" not in evaluations\n",
|
102 |
+
" ):\n",
|
103 |
+
" evaluations[\n",
|
104 |
+
" f\"{evaluation['task_id']}<:SEP:>{evaluation['model_id']}\"\n",
|
105 |
+
" ] = evaluation\n",
|
106 |
+
"\n",
|
107 |
+
" # Step 2.b.iv: Create merged tasks as follows\n",
|
108 |
+
" # 1. Merge comments for same task from different input JSONs\n",
|
109 |
+
" # 2. Merge flagged status for same task from different input JSONs (preserved flagged=True, if any of the input JSONs has it to be 'True')\n",
|
110 |
+
" for task in entry[\"tasks\"]:\n",
|
111 |
+
" if task[\"task_id\"] in merged_tasks:\n",
|
112 |
+
" if \"comments\" in task and task[\"comments\"]:\n",
|
113 |
+
" try:\n",
|
114 |
+
" merged_tasks[task[\"task_id\"]][\"comments\"].extend(\n",
|
115 |
+
" task[\"comments\"]\n",
|
116 |
+
" )\n",
|
117 |
+
" except KeyError:\n",
|
118 |
+
" merged_tasks[task[\"task_id\"]][\"comments\"] = [task[\"comments\"]]\n",
|
119 |
+
"\n",
|
120 |
+
" if \"flagged\" in task:\n",
|
121 |
+
" try:\n",
|
122 |
+
" merged_tasks[task[\"task_id\"]][\"flagged\"] = (\n",
|
123 |
+
" merged_tasks[task[\"task_id\"]][\"flagged\"] or task[\"flagged\"]\n",
|
124 |
+
" )\n",
|
125 |
+
" except KeyError:\n",
|
126 |
+
" merged_tasks[task[\"task_id\"]][\"flagged\"] = task[\"flagged\"]\n",
|
127 |
+
" else:\n",
|
128 |
+
" merged_tasks[task[\"task_id\"]] = task\n",
|
129 |
+
"\n",
|
130 |
+
" # Step 3: Find candidate models\n",
|
131 |
+
" # Criterion: A group of models which has evaluations for all tasks\n",
|
132 |
+
" candidate_models = {\n",
|
133 |
+
" model_id: all_models[model_id]\n",
|
134 |
+
" for model_id in set.intersection(*list(tasks_to_models.values()))\n",
|
135 |
+
" }\n",
|
136 |
+
"\n",
|
137 |
+
" # Step 4: Create potential filters\n",
|
138 |
+
" candidate_filters = all_filters\n",
|
139 |
+
" for task in merged_tasks.values():\n",
|
140 |
+
" candidate_filters = candidate_filters.intersection(task.keys())\n",
|
141 |
+
"\n",
|
142 |
+
" # Step 4: Return\n",
|
143 |
+
" if candidate_models:\n",
|
144 |
+
" return {\n",
|
145 |
+
" \"name\": f\"Merged from ${len(inputs)} files\",\n",
|
146 |
+
" \"filters\": list(candidate_filters),\n",
|
147 |
+
" \"models\": list(candidate_models.values()),\n",
|
148 |
+
" \"metrics\": inputs[0][\"metrics\"],\n",
|
149 |
+
" \"documents\": inputs[0][\"documents\"],\n",
|
150 |
+
" \"tasks\": inputs[0][\"tasks\"],\n",
|
151 |
+
" \"evaluations\": [\n",
|
152 |
+
" evaluations[f\"{task['task_id']}<:SEP:>{model_id}\"]\n",
|
153 |
+
" for task in inputs[0][\"tasks\"]\n",
|
154 |
+
" for model_id in candidate_models\n",
|
155 |
+
" ],\n",
|
156 |
+
" }\n",
|
157 |
+
" else:\n",
|
158 |
+
" print(\"Failed to find models with evaluations for all tasks.\")\n",
|
159 |
+
" return None\n",
|
160 |
+
"\n",
|
161 |
+
"\n",
|
162 |
+
"# =========================================================\n",
|
163 |
+
"# EXECUTE\n",
|
164 |
+
"# =========================================================\n",
|
165 |
+
"# Step 1: Load input files to be merged\n",
|
166 |
+
"inputs = [\n",
|
167 |
+
" read_json(\n",
|
168 |
+
" filename=\"<PATH TO INPUT JSON 1>\"\n",
|
169 |
+
" ),\n",
|
170 |
+
" read_json(\n",
|
171 |
+
" filename=\"<PATH TO INPUT JSON 2>\"\n",
|
172 |
+
" ),\n",
|
173 |
+
"]\n",
|
174 |
+
"\n",
|
175 |
+
"# Step 2: Run merging function\n",
|
176 |
+
"output = merge(inputs=inputs)\n",
|
177 |
+
"\n",
|
178 |
+
"# Step 3: Save merged output\n",
|
179 |
+
"if output:\n",
|
180 |
+
" write_json(\n",
|
181 |
+
" filename=\"<PATH TO MERGED FILE>\",\n",
|
182 |
+
" content=output,\n",
|
183 |
+
" )"
|
184 |
+
]
|
185 |
+
}
|
186 |
+
],
|
187 |
+
"metadata": {
|
188 |
+
"kernelspec": {
|
189 |
+
"display_name": "Python 3 (ipykernel)",
|
190 |
+
"language": "python",
|
191 |
+
"name": "python3"
|
192 |
+
},
|
193 |
+
"language_info": {
|
194 |
+
"codemirror_mode": {
|
195 |
+
"name": "ipython",
|
196 |
+
"version": 3
|
197 |
+
},
|
198 |
+
"file_extension": ".py",
|
199 |
+
"mimetype": "text/x-python",
|
200 |
+
"name": "python",
|
201 |
+
"nbconvert_exporter": "python",
|
202 |
+
"pygments_lexer": "ipython3",
|
203 |
+
"version": "3.10.13"
|
204 |
+
}
|
205 |
+
},
|
206 |
+
"nbformat": 4,
|
207 |
+
"nbformat_minor": 1
|
208 |
+
}
|
notebooks/validate_input_file.ipynb
ADDED
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {
|
7 |
+
"collapsed": true,
|
8 |
+
"pycharm": {
|
9 |
+
"name": "#%% md\n"
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"source": [
|
13 |
+
"# Validate analytics JSON\n",
|
14 |
+
"\n",
|
15 |
+
"### ✅ Prerequisites\n",
|
16 |
+
"\n",
|
17 |
+
"[Python 3.10](https://www.python.org/downloads/)\n"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"from typing import Literal\n",
|
27 |
+
"import json\n",
|
28 |
+
"\n",
|
29 |
+
"def read_json(filename: str, encoding=\"utf-8\"):\n",
|
30 |
+
" with open(filename, mode=\"r\", encoding=encoding) as fp:\n",
|
31 |
+
" return json.load(fp)\n",
|
32 |
+
"\n",
|
33 |
+
"\n",
|
34 |
+
"def is_valid_model(model: dict) -> bool:\n",
|
35 |
+
" if \"model_id\" not in model:\n",
|
36 |
+
" raise ValueError(f\"Missing mandatory 'model_id' field in {model}\")\n",
|
37 |
+
" if \"name\" not in model:\n",
|
38 |
+
" raise ValueError(f\"Missing mandatory 'model_id' field in {model}\")\n",
|
39 |
+
" if \"owner\" not in model:\n",
|
40 |
+
" raise ValueError(f\"Missing mandatory 'model_id' field in {model}\")\n",
|
41 |
+
"\n",
|
42 |
+
" return True\n",
|
43 |
+
"\n",
|
44 |
+
"\n",
|
45 |
+
"def is_valid_metric(metric: dict) -> bool:\n",
|
46 |
+
" def is_valid_metric_value(metric_value: dict) -> bool:\n",
|
47 |
+
" # Validate \"value\" field\n",
|
48 |
+
" if \"value\" not in metric_value or not metric_value[\"value\"]:\n",
|
49 |
+
" raise ValueError(f\"Missing mandatory 'value' field in {metric_value}\")\n",
|
50 |
+
"\n",
|
51 |
+
" if not (\n",
|
52 |
+
" isinstance(metric_value[\"value\"], str)\n",
|
53 |
+
" or isinstance(metric_value[\"value\"], float)\n",
|
54 |
+
" or isinstance(metric_value[\"value\"], int)\n",
|
55 |
+
" ):\n",
|
56 |
+
" raise ValueError(\n",
|
57 |
+
" f\"Invalid type: {type(metric_value['value'])} for 'value' field in {metric_value}\"\n",
|
58 |
+
" )\n",
|
59 |
+
"\n",
|
60 |
+
" return True\n",
|
61 |
+
"\n",
|
62 |
+
" # Validate \"name\" field\n",
|
63 |
+
" if \"name\" not in metric:\n",
|
64 |
+
" raise ValueError(f\"Missing mandatory 'name' field in {metric}\")\n",
|
65 |
+
"\n",
|
66 |
+
" if not isinstance(metric[\"name\"], str):\n",
|
67 |
+
" raise ValueError(\n",
|
68 |
+
" f\"Invalid type: {type(metric['name'])} for 'name' field in {metric}\"\n",
|
69 |
+
" )\n",
|
70 |
+
"\n",
|
71 |
+
" # Validate \"author\" field\n",
|
72 |
+
" if \"author\" not in metric:\n",
|
73 |
+
" raise ValueError(f\"Missing mandatory 'name' field in {metric}\")\n",
|
74 |
+
"\n",
|
75 |
+
" if not isinstance(metric[\"author\"], str):\n",
|
76 |
+
" raise ValueError(\n",
|
77 |
+
" f\"Invalid type: {type(metric['author'])} for 'author' field in {metric}\"\n",
|
78 |
+
" )\n",
|
79 |
+
"\n",
|
80 |
+
" if metric[\"author\"] not in [\"human\", \"algorithm\"]:\n",
|
81 |
+
" raise ValueError(f\"Unsupported author: {metric['author']} in {metric}\")\n",
|
82 |
+
"\n",
|
83 |
+
" # Validate \"type\" field\n",
|
84 |
+
" if \"type\" not in metric:\n",
|
85 |
+
" raise ValueError(f\"Missing mandatory 'type' field in {metric}\")\n",
|
86 |
+
"\n",
|
87 |
+
" if metric[\"type\"] not in [\"categorical\", \"numerical\", \"text\"]:\n",
|
88 |
+
" raise ValueError(f\"Unsupported type: {metric['type']} in {metric}\")\n",
|
89 |
+
"\n",
|
90 |
+
" # Validate \"categorical\" type metric\n",
|
91 |
+
" if metric[\"type\"] == \"categorical\" and (\n",
|
92 |
+
" \"values\" not in metric or not metric[\"values\"]\n",
|
93 |
+
" ):\n",
|
94 |
+
" raise ValueError(\n",
|
95 |
+
" f\"Missing mandatory 'values' field for 'categorical' type metric in {metric}\"\n",
|
96 |
+
" )\n",
|
97 |
+
"\n",
|
98 |
+
" if metric[\"type\"] == \"categorical\" and not all(\n",
|
99 |
+
" [\n",
|
100 |
+
" is_valid_metric_value(metric_value=metric_value)\n",
|
101 |
+
" for metric_value in metric[\"values\"]\n",
|
102 |
+
" ]\n",
|
103 |
+
" ):\n",
|
104 |
+
" raise ValueError(\n",
|
105 |
+
" f\"Invalid metric values for 'categorical' type of metric in {metric}\"\n",
|
106 |
+
" )\n",
|
107 |
+
"\n",
|
108 |
+
" # Validate \"numerical\" type metric\n",
|
109 |
+
" if metric[\"type\"] == \"numerical\" and not (\n",
|
110 |
+
" \"range\" in metric or metric[\"range\"] or 2 <= len(metric[\"range\"]) > 3\n",
|
111 |
+
" ):\n",
|
112 |
+
" raise ValueError(\n",
|
113 |
+
" f\"Missing or invalid 'range' field for 'numerical' type of metric in {metric}\"\n",
|
114 |
+
" )\n",
|
115 |
+
"\n",
|
116 |
+
" # Validate \"aggregator\" field\n",
|
117 |
+
" if metric[\"type\"] != \"text\" and \"aggregator\" not in metric:\n",
|
118 |
+
" raise ValueError(f\"Missing mandatory 'aggregator' field in {metric}\")\n",
|
119 |
+
"\n",
|
120 |
+
" if metric[\"type\"] == \"numerical\" and metric[\"aggregator\"] != \"average\":\n",
|
121 |
+
" raise ValueError(\n",
|
122 |
+
" f\"Invalid 'aggregator' field for 'numerical' type of metric in {metric}\"\n",
|
123 |
+
" )\n",
|
124 |
+
"\n",
|
125 |
+
" # Validate 'display_name' field, if present\n",
|
126 |
+
" if \"display_name\" in metric and not isinstance(metric[\"display_name\"], str):\n",
|
127 |
+
" raise ValueError(\n",
|
128 |
+
" f\"Invalid type: {type(metric['display_name'])} for 'display_name' field in {metric}\"\n",
|
129 |
+
" )\n",
|
130 |
+
"\n",
|
131 |
+
" return True\n",
|
132 |
+
"\n",
|
133 |
+
"\n",
|
134 |
+
"def is_valid_document(document: dict) -> bool:\n",
|
135 |
+
" # Validate \"document_id\" field\n",
|
136 |
+
" if \"document_id\" not in document:\n",
|
137 |
+
" raise ValueError(f\"Missing mandatory 'document_id' field in {document}\")\n",
|
138 |
+
"\n",
|
139 |
+
" if not isinstance(document[\"document_id\"], str):\n",
|
140 |
+
" raise ValueError(\n",
|
141 |
+
" f\"Invalid type: {type(document['document_id'])} for 'document_id' field in {document}\"\n",
|
142 |
+
" )\n",
|
143 |
+
"\n",
|
144 |
+
" # Validate \"text\" field\n",
|
145 |
+
" if \"text\" not in document:\n",
|
146 |
+
" raise ValueError(f\"Missing mandatory 'text' field in {document}\")\n",
|
147 |
+
"\n",
|
148 |
+
" if not isinstance(document[\"text\"], str):\n",
|
149 |
+
" raise ValueError(\n",
|
150 |
+
" f\"Invalid type: {type(document['text'])} for 'text' field in {document}\"\n",
|
151 |
+
" )\n",
|
152 |
+
"\n",
|
153 |
+
" # Validate 'title' field, if present\n",
|
154 |
+
" if \"title\" in document and not isinstance(document[\"title\"], str):\n",
|
155 |
+
" raise ValueError(\n",
|
156 |
+
" f\"Invalid type: {type(document['title'])} for 'title' field in {document}\"\n",
|
157 |
+
" )\n",
|
158 |
+
"\n",
|
159 |
+
" # Validate 'url' field, if present\n",
|
160 |
+
" if \"url\" in document and not isinstance(document[\"url\"], str):\n",
|
161 |
+
" raise ValueError(\n",
|
162 |
+
" f\"Invalid type: {type(document['url'])} for 'url' field in {document}\"\n",
|
163 |
+
" )\n",
|
164 |
+
"\n",
|
165 |
+
" return True\n",
|
166 |
+
"\n",
|
167 |
+
"\n",
|
168 |
+
"def is_valid_task(task: dict) -> bool:\n",
|
169 |
+
" def is_valid_context(context: dict) -> bool:\n",
|
170 |
+
" # Validate \"document_id\" field\n",
|
171 |
+
" if \"document_id\" not in context:\n",
|
172 |
+
" raise ValueError(f\"Missing mandatory 'document_id' field in {context}\")\n",
|
173 |
+
"\n",
|
174 |
+
" if not isinstance(context[\"document_id\"], str):\n",
|
175 |
+
" raise ValueError(\n",
|
176 |
+
" f\"Invalid type: {type(context['document_id'])} for 'document_id' field in {context}\"\n",
|
177 |
+
" )\n",
|
178 |
+
"\n",
|
179 |
+
" return True\n",
|
180 |
+
"\n",
|
181 |
+
" # Validate \"task_id\" field\n",
|
182 |
+
" if \"task_id\" not in task:\n",
|
183 |
+
" raise ValueError(f\"Missing mandatory 'task_id' field in {task}\")\n",
|
184 |
+
"\n",
|
185 |
+
" if not isinstance(task[\"task_id\"], str):\n",
|
186 |
+
" raise ValueError(\n",
|
187 |
+
" f\"Invalid type: {type(task['task_id'])} for 'task_id' field in {task}\"\n",
|
188 |
+
" )\n",
|
189 |
+
"\n",
|
190 |
+
" # Validate \"task_type\" field\n",
|
191 |
+
" if \"task_type\" not in task:\n",
|
192 |
+
" raise ValueError(f\"Missing mandatory 'task_type' field in {task}\")\n",
|
193 |
+
"\n",
|
194 |
+
" if not isinstance(task[\"task_type\"], str):\n",
|
195 |
+
" raise ValueError(\n",
|
196 |
+
" f\"Invalid type: {type(task['task_type'])} for 'task_type' field in {task}\"\n",
|
197 |
+
" )\n",
|
198 |
+
"\n",
|
199 |
+
" if task[\"task_type\"] not in [\"question_answering\", \"conversation\", \"rag\", \"text_generation\", \"json_generation\"]:\n",
|
200 |
+
" raise ValueError(f\"Invalid task_type: {task['task_type']} in {task}\")\n",
|
201 |
+
"\n",
|
202 |
+
" # Validate `contexts` field\n",
|
203 |
+
" if not all([is_valid_context(context=context) for context in task[\"contexts\"]]):\n",
|
204 |
+
" raise ValueError(f\"Invalid context values in {task}\")\n",
|
205 |
+
"\n",
|
206 |
+
" return True\n",
|
207 |
+
"\n",
|
208 |
+
"\n",
|
209 |
+
"def is_valid_evaluation(\n",
|
210 |
+
" evaluation: dict, metrics: list[str], models: list[str]\n",
|
211 |
+
") -> bool:\n",
|
212 |
+
" def is_valid_annotations(annotations: dict, metric: str) -> bool:\n",
|
213 |
+
" for annotator_id, rating in annotations.items():\n",
|
214 |
+
" if not isinstance(annotator_id, str):\n",
|
215 |
+
" raise ValueError(\n",
|
216 |
+
" f\"Invalid type: {type(annotator_id)} for 'annotator_id' in {annotations} for '{metric}' metric in evaluation with with task_id: {evaluation['task_id']} and model_id: {evaluation['model_id']}\"\n",
|
217 |
+
" )\n",
|
218 |
+
"\n",
|
219 |
+
" if not isinstance(rating, dict):\n",
|
220 |
+
" raise ValueError(\n",
|
221 |
+
" f\"Invalid type: {type(rating)} for 'rating' in {annotations} for '{metric}' metric in evaluation with with task_id: {evaluation['task_id']} and model_id: {evaluation['model_id']}\"\n",
|
222 |
+
" )\n",
|
223 |
+
"\n",
|
224 |
+
" # Validate \"task_id\" field\n",
|
225 |
+
" if \"value\" not in rating:\n",
|
226 |
+
" raise ValueError(\n",
|
227 |
+
" f\"Missing mandatory 'value' field in {rating} for '{metric}' metric in evaluation with with task_id: {evaluation['task_id']} and model_id: {evaluation['model_id']}\"\n",
|
228 |
+
" )\n",
|
229 |
+
"\n",
|
230 |
+
" if not (\n",
|
231 |
+
" isinstance(rating[\"value\"], str)\n",
|
232 |
+
" or isinstance(rating[\"value\"], float)\n",
|
233 |
+
" or isinstance(rating[\"value\"], int)\n",
|
234 |
+
" ):\n",
|
235 |
+
" raise ValueError(\n",
|
236 |
+
" f\"Invalid type: {type(rating['value'])} for 'value' in {rating} for '{metric}' metric in evaluation with with task_id: {evaluation['task_id']} and model_id: {evaluation['model_id']}\"\n",
|
237 |
+
" )\n",
|
238 |
+
"\n",
|
239 |
+
" return True\n",
|
240 |
+
"\n",
|
241 |
+
" # Validate \"task_id\" field\n",
|
242 |
+
" if \"task_id\" not in evaluation:\n",
|
243 |
+
" raise ValueError(f\"Missing mandatory 'task_id' field in {evaluation}\")\n",
|
244 |
+
"\n",
|
245 |
+
" if not isinstance(evaluation[\"task_id\"], str):\n",
|
246 |
+
" raise ValueError(\n",
|
247 |
+
" f\"Invalid type: {type(evaluation['task_id'])} for 'task_id' field in {evaluation}\"\n",
|
248 |
+
" )\n",
|
249 |
+
"\n",
|
250 |
+
" # Validate \"model_id\" field\n",
|
251 |
+
" if \"model_id\" not in evaluation:\n",
|
252 |
+
" raise ValueError(f\"Missing mandatory 'model_id' field in {evaluation}\")\n",
|
253 |
+
"\n",
|
254 |
+
" if not isinstance(evaluation[\"model_id\"], str):\n",
|
255 |
+
" raise ValueError(\n",
|
256 |
+
" f\"Invalid type: {type(evaluation['model_id'])} for 'model_id' field in {evaluation}\"\n",
|
257 |
+
" )\n",
|
258 |
+
"\n",
|
259 |
+
" if evaluation[\"model_id\"] not in models:\n",
|
260 |
+
" raise ValueError(\n",
|
261 |
+
" f\"Invalid model with model_id: {evaluation['model_id']} for evaluation with task_id: {evaluation['task_id']}\"\n",
|
262 |
+
" )\n",
|
263 |
+
"\n",
|
264 |
+
" # Validate \"model_response\" field\n",
|
265 |
+
" if \"task_id\" not in evaluation:\n",
|
266 |
+
" raise ValueError(f\"Missing mandatory 'model_response' field in {evaluation}\")\n",
|
267 |
+
"\n",
|
268 |
+
" if not isinstance(evaluation[\"model_response\"], str):\n",
|
269 |
+
" raise ValueError(\n",
|
270 |
+
" f\"Invalid type: {type(evaluation['model_response'])} for 'model_response' field in {evaluation}\"\n",
|
271 |
+
" )\n",
|
272 |
+
"\n",
|
273 |
+
" # Validate \"annotations\" field\n",
|
274 |
+
" if \"annotations\" not in evaluation:\n",
|
275 |
+
" raise ValueError(f\"Missing mandatory 'annotations' field in {evaluation}\")\n",
|
276 |
+
"\n",
|
277 |
+
" if not all(\n",
|
278 |
+
" is_valid_annotations(annotations=annotations, metric=metric)\n",
|
279 |
+
" for metric, annotations in evaluation[\"annotations\"].items()\n",
|
280 |
+
" ):\n",
|
281 |
+
" raise ValueError(\n",
|
282 |
+
" f\"Invalid annotations in evaluation with with task_id: {evaluation['task_id']} and model_id: {evaluation['model_id']}\"\n",
|
283 |
+
" )\n",
|
284 |
+
"\n",
|
285 |
+
" return True\n",
|
286 |
+
"\n",
|
287 |
+
"\n",
|
288 |
+
"def validate(data: dict, level: Literal[\"minimal\", \"aggresive\"] = \"minimal\") -> None:\n",
|
289 |
+
" # Validate \"models\" field\n",
|
290 |
+
" if \"models\" not in data:\n",
|
291 |
+
" raise ValueError(f\"Missing mandatory 'models' field in {data}\")\n",
|
292 |
+
"\n",
|
293 |
+
" if not all(is_valid_model(model) for model in data[\"models\"]):\n",
|
294 |
+
" raise ValueError(f\"Invalid model in {data['models']}\")\n",
|
295 |
+
"\n",
|
296 |
+
" # Validate \"metrics\" field\n",
|
297 |
+
" if \"metrics\" not in data:\n",
|
298 |
+
" raise ValueError(f\"Missing mandatory 'metrics' field in {data}\")\n",
|
299 |
+
"\n",
|
300 |
+
" if not all(is_valid_metric(metric) for metric in data[\"metrics\"]):\n",
|
301 |
+
" raise ValueError(f\"Invalid metric in {data['metrics']}\")\n",
|
302 |
+
"\n",
|
303 |
+
" # Validate \"documents\" field\n",
|
304 |
+
" if \"documents\" not in data:\n",
|
305 |
+
" raise ValueError(f\"Missing mandatory 'documents' field in {data}\")\n",
|
306 |
+
"\n",
|
307 |
+
" if not all(is_valid_document(document) for document in data[\"documents\"]):\n",
|
308 |
+
" raise ValueError(f\"Invalid document in {data['documents']}\")\n",
|
309 |
+
"\n",
|
310 |
+
" # Validate \"tasks\" field\n",
|
311 |
+
" if \"tasks\" not in data:\n",
|
312 |
+
" raise ValueError(f\"Missing mandatory 'tasks' field in {data}\")\n",
|
313 |
+
"\n",
|
314 |
+
" if not all(is_valid_task(task) for task in data[\"tasks\"]):\n",
|
315 |
+
" raise ValueError(f\"Invalid task in {data['tasks']}\")\n",
|
316 |
+
"\n",
|
317 |
+
" # Warn about duplicate task IDs\n",
|
318 |
+
" task_ids = set()\n",
|
319 |
+
" for task in data[\"tasks\"]:\n",
|
320 |
+
" task_id = task[\"task_id\"]\n",
|
321 |
+
" if task_id in task_ids:\n",
|
322 |
+
" print(f\"Duplicate task_id: {task_id} found in 'tasks' field\")\n",
|
323 |
+
" else:\n",
|
324 |
+
" task_ids.add(task_id)\n",
|
325 |
+
"\n",
|
326 |
+
" # Validate \"evaluations\" field\n",
|
327 |
+
" if \"evaluations\" not in data:\n",
|
328 |
+
" raise ValueError(f\"Missing mandatory 'evaluations' field in {data}\")\n",
|
329 |
+
"\n",
|
330 |
+
" applicable_metrics = [metric[\"name\"] for metric in data[\"metrics\"]]\n",
|
331 |
+
" applicable_models = [model[\"model_id\"] for model in data[\"models\"]]\n",
|
332 |
+
" if not all(\n",
|
333 |
+
" is_valid_evaluation(\n",
|
334 |
+
" evaluation, metrics=applicable_metrics, models=applicable_models\n",
|
335 |
+
" )\n",
|
336 |
+
" for evaluation in data[\"evaluations\"]\n",
|
337 |
+
" ):\n",
|
338 |
+
" raise ValueError(f\"Invalid evaluation in {data['evaluations']}\")\n",
|
339 |
+
"\n",
|
340 |
+
" # Validate evaluations exists for all task for all models with all metrics\n",
|
341 |
+
" evaluated_models_per_task = {}\n",
|
342 |
+
" evaluated_metrics_per_model_per_task = {}\n",
|
343 |
+
" for evaluation in data[\"evaluations\"]:\n",
|
344 |
+
" task_id = evaluation[\"task_id\"]\n",
|
345 |
+
" model_id = evaluation[\"model_id\"]\n",
|
346 |
+
" try:\n",
|
347 |
+
" evaluated_models_per_task[task_id].append(model_id)\n",
|
348 |
+
" except KeyError:\n",
|
349 |
+
" evaluated_models_per_task[task_id] = [model_id]\n",
|
350 |
+
"\n",
|
351 |
+
" for metric in evaluation[\"annotations\"].keys():\n",
|
352 |
+
" try:\n",
|
353 |
+
" evaluated_metrics_per_model_per_task[f\"{task_id}:++:{model_id}\"].append(\n",
|
354 |
+
" metric\n",
|
355 |
+
" )\n",
|
356 |
+
" except KeyError:\n",
|
357 |
+
" evaluated_metrics_per_model_per_task[f\"{task_id}:++:{model_id}\"] = [\n",
|
358 |
+
" metric\n",
|
359 |
+
" ]\n",
|
360 |
+
"\n",
|
361 |
+
" evaluated_task_ids = set(evaluated_models_per_task.keys())\n",
|
362 |
+
" if evaluated_task_ids != task_ids:\n",
|
363 |
+
" if len(evaluated_task_ids) > len(task_ids):\n",
|
364 |
+
" print(\n",
|
365 |
+
" f\"Evaluations found for following additional tasks: {evaluated_task_ids - task_ids}\"\n",
|
366 |
+
" )\n",
|
367 |
+
" elif len(task_ids) > len(evaluated_task_ids):\n",
|
368 |
+
" print(\n",
|
369 |
+
" f\"Missing evaluations following tasks: {task_ids - evaluated_task_ids}\"\n",
|
370 |
+
" )\n",
|
371 |
+
" else:\n",
|
372 |
+
" print(\n",
|
373 |
+
" f\"Missing evaluations following tasks: {task_ids - evaluated_task_ids}\"\n",
|
374 |
+
" )\n",
|
375 |
+
" print(\n",
|
376 |
+
" f\"Evaluations found for following additional tasks: {evaluated_task_ids - task_ids}\"\n",
|
377 |
+
" )\n",
|
378 |
+
"\n",
|
379 |
+
" evaluations_with_missing_models = {}\n",
|
380 |
+
" evaluations_with_additional_models = {}\n",
|
381 |
+
" for task_id, models in evaluated_models_per_task.items():\n",
|
382 |
+
" if set(models) != set(applicable_models):\n",
|
383 |
+
" if set(applicable_models) - set(models):\n",
|
384 |
+
" evaluations_with_missing_models[task_id] = set(applicable_models) - set(\n",
|
385 |
+
" models\n",
|
386 |
+
" )\n",
|
387 |
+
" elif set(models) - set(applicable_models):\n",
|
388 |
+
" evaluations_with_additional_models[task_id] = set(models) - set(\n",
|
389 |
+
" applicable_models\n",
|
390 |
+
" )\n",
|
391 |
+
"\n",
|
392 |
+
" if evaluations_with_missing_models:\n",
|
393 |
+
" for task_id, missing_models in evaluations_with_missing_models.items():\n",
|
394 |
+
" print(\n",
|
395 |
+
" f\"Missing following models: {missing_models} for task with task_id: {task_id}\"\n",
|
396 |
+
" )\n",
|
397 |
+
"\n",
|
398 |
+
" evaluations_per_model_with_missing_metrics = {}\n",
|
399 |
+
" evaluations_per_model_with_additional_metrics = {}\n",
|
400 |
+
" for key, metrics in evaluated_metrics_per_model_per_task.items():\n",
|
401 |
+
" if set(metrics) != set(applicable_metrics):\n",
|
402 |
+
" if set(applicable_metrics) - set(metrics):\n",
|
403 |
+
" evaluations_per_model_with_missing_metrics[key] = set(\n",
|
404 |
+
" applicable_metrics\n",
|
405 |
+
" ) - set(metrics)\n",
|
406 |
+
" elif set(metrics) - set(applicable_metrics):\n",
|
407 |
+
" evaluations_per_model_with_additional_metrics[key] = set(metrics) - set(\n",
|
408 |
+
" applicable_metrics\n",
|
409 |
+
" )\n",
|
410 |
+
"\n",
|
411 |
+
" if evaluations_per_model_with_missing_metrics:\n",
|
412 |
+
" for key, missing_metrics in evaluations_per_model_with_missing_metrics.items():\n",
|
413 |
+
" segments = key.split(\":++:\")\n",
|
414 |
+
" print(\n",
|
415 |
+
" f\"Missing following metrics: {missing_metrics} for task with task_id: {segments[0]} and model_id: {segments[1]}\"\n",
|
416 |
+
" )\n",
|
417 |
+
"\n",
|
418 |
+
" # Additional checks\n",
|
419 |
+
" if level == \"aggresive\":\n",
|
420 |
+
" if evaluations_with_additional_models:\n",
|
421 |
+
" print(\"====================================================\")\n",
|
422 |
+
" print(\"Evaluations with additional models\")\n",
|
423 |
+
" print(\"====================================================\")\n",
|
424 |
+
" for (\n",
|
425 |
+
" task_id,\n",
|
426 |
+
" additional_models,\n",
|
427 |
+
" ) in evaluations_with_additional_models.items():\n",
|
428 |
+
" print(f\"Task ID: {task_id}\\tAdditional models: {additional_models}\")\n",
|
429 |
+
"\n",
|
430 |
+
" if evaluations_per_model_with_additional_metrics:\n",
|
431 |
+
" print(\"====================================================\")\n",
|
432 |
+
" print(\"Evaluations with additional metrics\")\n",
|
433 |
+
" print(\"====================================================\")\n",
|
434 |
+
" for (\n",
|
435 |
+
" key,\n",
|
436 |
+
" additional_metrics,\n",
|
437 |
+
" ) in evaluations_per_model_with_additional_metrics.items():\n",
|
438 |
+
" segments = key.split(\":++:\")\n",
|
439 |
+
" print(\n",
|
440 |
+
" f\"Task ID: {segments[0]}\\tModel: {segments[1]}\\tAdditional metrics: {additional_metrics}\"\n",
|
441 |
+
" )"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"cell_type": "markdown",
|
446 |
+
"metadata": {},
|
447 |
+
"source": [
|
448 |
+
"### Run validator\n"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"cell_type": "code",
|
453 |
+
"execution_count": null,
|
454 |
+
"metadata": {},
|
455 |
+
"outputs": [],
|
456 |
+
"source": [
|
457 |
+
"validate(\n",
|
458 |
+
" data=read_json(\n",
|
459 |
+
" filename=\"<PATH_TO_INPUT_FILE>\"\n",
|
460 |
+
" ),\n",
|
461 |
+
" level=\"aggresive\",\n",
|
462 |
+
")"
|
463 |
+
]
|
464 |
+
}
|
465 |
+
],
|
466 |
+
"metadata": {
|
467 |
+
"kernelspec": {
|
468 |
+
"display_name": "Python 3 (ipykernel)",
|
469 |
+
"language": "python",
|
470 |
+
"name": "python3"
|
471 |
+
},
|
472 |
+
"language_info": {
|
473 |
+
"codemirror_mode": {
|
474 |
+
"name": "ipython",
|
475 |
+
"version": 3
|
476 |
+
},
|
477 |
+
"file_extension": ".py",
|
478 |
+
"mimetype": "text/x-python",
|
479 |
+
"name": "python",
|
480 |
+
"nbconvert_exporter": "python",
|
481 |
+
"pygments_lexer": "ipython3",
|
482 |
+
"version": "3.10.13"
|
483 |
+
}
|
484 |
+
},
|
485 |
+
"nbformat": 4,
|
486 |
+
"nbformat_minor": 1
|
487 |
+
}
|
src/processor.ts
CHANGED
@@ -18,7 +18,7 @@
|
|
18 |
|
19 |
import { isEmpty, isNumber } from 'lodash';
|
20 |
import { hash } from '@/src/utilities/strings';
|
21 |
-
|
22 |
import {
|
23 |
Data,
|
24 |
MetricValue,
|
@@ -350,7 +350,15 @@ export function exportData(
|
|
350 |
documents: data.documents,
|
351 |
}),
|
352 |
tasks: data.tasks,
|
353 |
-
evaluations: data.evaluations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
};
|
355 |
|
356 |
// Step 1: If tasks are defined
|
@@ -401,9 +409,17 @@ export function exportData(
|
|
401 |
documents: Array.from(relevantDocuments),
|
402 |
}),
|
403 |
tasks: tasks,
|
404 |
-
evaluations: data.evaluations
|
405 |
-
relevantTaskIds.has(evaluation.taskId)
|
406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
};
|
408 |
} else {
|
409 |
// Step 1.b: Create an object to be exported by copying over tasks information
|
@@ -416,7 +432,15 @@ export function exportData(
|
|
416 |
documents: data.documents,
|
417 |
}),
|
418 |
tasks: tasks,
|
419 |
-
evaluations: data.evaluations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
};
|
421 |
}
|
422 |
}
|
@@ -428,7 +452,7 @@ export function exportData(
|
|
428 |
element.setAttribute(
|
429 |
'href',
|
430 |
'data:application/json;charset=utf-8, ' +
|
431 |
-
encodeURIComponent(JSON.stringify(dataToExport)),
|
432 |
);
|
433 |
element.setAttribute('download', 'analytics.json');
|
434 |
|
|
|
18 |
|
19 |
import { isEmpty, isNumber } from 'lodash';
|
20 |
import { hash } from '@/src/utilities/strings';
|
21 |
+
import { snakeCaseKeys } from '@/src/utilities/objects';
|
22 |
import {
|
23 |
Data,
|
24 |
MetricValue,
|
|
|
350 |
documents: data.documents,
|
351 |
}),
|
352 |
tasks: data.tasks,
|
353 |
+
evaluations: data.evaluations.map((evaluation) => {
|
354 |
+
return {
|
355 |
+
taskId: evaluation.taskId,
|
356 |
+
modelId: evaluation.modelId,
|
357 |
+
modelResponse: evaluation.modelResponse,
|
358 |
+
annotations: evaluation.annotations,
|
359 |
+
...(evaluation.contexts && { contexts: evaluation.contexts }),
|
360 |
+
};
|
361 |
+
}),
|
362 |
};
|
363 |
|
364 |
// Step 1: If tasks are defined
|
|
|
409 |
documents: Array.from(relevantDocuments),
|
410 |
}),
|
411 |
tasks: tasks,
|
412 |
+
evaluations: data.evaluations
|
413 |
+
.filter((evaluation) => relevantTaskIds.has(evaluation.taskId))
|
414 |
+
.map((evaluation) => {
|
415 |
+
return {
|
416 |
+
taskId: evaluation.taskId,
|
417 |
+
modelId: evaluation.modelId,
|
418 |
+
modelResponse: evaluation.modelResponse,
|
419 |
+
annotations: evaluation.annotations,
|
420 |
+
...(evaluation.contexts && { contexts: evaluation.contexts }),
|
421 |
+
};
|
422 |
+
}),
|
423 |
};
|
424 |
} else {
|
425 |
// Step 1.b: Create an object to be exported by copying over tasks information
|
|
|
432 |
documents: data.documents,
|
433 |
}),
|
434 |
tasks: tasks,
|
435 |
+
evaluations: data.evaluations.map((evaluation) => {
|
436 |
+
return {
|
437 |
+
taskId: evaluation.taskId,
|
438 |
+
modelId: evaluation.modelId,
|
439 |
+
modelResponse: evaluation.modelResponse,
|
440 |
+
annotations: evaluation.annotations,
|
441 |
+
...(evaluation.contexts && { contexts: evaluation.contexts }),
|
442 |
+
};
|
443 |
+
}),
|
444 |
};
|
445 |
}
|
446 |
}
|
|
|
452 |
element.setAttribute(
|
453 |
'href',
|
454 |
'data:application/json;charset=utf-8, ' +
|
455 |
+
encodeURIComponent(JSON.stringify(snakeCaseKeys(dataToExport))),
|
456 |
);
|
457 |
element.setAttribute('download', 'analytics.json');
|
458 |
|
src/types.ts
CHANGED
@@ -182,6 +182,7 @@ export interface Annotation {
|
|
182 |
readonly timestamp?: number;
|
183 |
readonly duration?: number;
|
184 |
}
|
|
|
185 |
export interface TaskEvaluation {
|
186 |
readonly taskId: string;
|
187 |
readonly modelId: string;
|
|
|
182 |
readonly timestamp?: number;
|
183 |
readonly duration?: number;
|
184 |
}
|
185 |
+
|
186 |
export interface TaskEvaluation {
|
187 |
readonly taskId: string;
|
188 |
readonly modelId: string;
|
src/utilities/objects.ts
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
*
|
17 |
**/
|
18 |
|
19 |
-
import { camelCase, isPlainObject, isArray, isEmpty } from 'lodash';
|
20 |
|
21 |
export function camelCaseKeys(
|
22 |
obj: { [key: string]: any },
|
@@ -52,6 +52,37 @@ export function camelCaseKeys(
|
|
52 |
return obj;
|
53 |
}
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
function areArraysIntersecting(
|
56 |
a: string | string[],
|
57 |
b: string | string[],
|
|
|
16 |
*
|
17 |
**/
|
18 |
|
19 |
+
import { camelCase, snakeCase, isPlainObject, isArray, isEmpty } from 'lodash';
|
20 |
|
21 |
export function camelCaseKeys(
|
22 |
obj: { [key: string]: any },
|
|
|
52 |
return obj;
|
53 |
}
|
54 |
|
55 |
+
export function snakeCaseKeys(
|
56 |
+
obj: { [key: string]: any },
|
57 |
+
keys: string[] = [
|
58 |
+
'taskId',
|
59 |
+
'modelId',
|
60 |
+
'modelResponse',
|
61 |
+
'displayValue',
|
62 |
+
'numericValue',
|
63 |
+
'minValue',
|
64 |
+
'maxValue',
|
65 |
+
'taskType',
|
66 |
+
'documentId',
|
67 |
+
'displayName',
|
68 |
+
],
|
69 |
+
) {
|
70 |
+
if (isArray(obj)) {
|
71 |
+
return obj.map((v) => snakeCaseKeys(v));
|
72 |
+
} else if (isPlainObject(obj)) {
|
73 |
+
return Object.keys(obj).reduce(
|
74 |
+
(result, key) => ({
|
75 |
+
...result,
|
76 |
+
...(keys.includes(key)
|
77 |
+
? { [snakeCase(key)]: snakeCaseKeys(obj[key]) }
|
78 |
+
: { [key]: snakeCaseKeys(obj[key]) }),
|
79 |
+
}),
|
80 |
+
{},
|
81 |
+
);
|
82 |
+
}
|
83 |
+
return obj;
|
84 |
+
}
|
85 |
+
|
86 |
function areArraysIntersecting(
|
87 |
a: string | string[],
|
88 |
b: string | string[],
|