Update README.md
Browse files
README.md
CHANGED
@@ -5,6 +5,375 @@ colorFrom: pink
|
|
5 |
colorTo: indigo
|
6 |
sdk: docker
|
7 |
pinned: false
|
|
|
8 |
---
|
9 |
|
10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
colorTo: indigo
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
+
license: mit
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
12 |
+
|
13 |
+
# Door & Window Detection using YOLOv8
|
14 |
+
|
15 |
+
A custom-trained YOLOv8 model for detecting doors and windows in construction blueprint-style images, deployed as a FastAPI service with dual response modes.
|
16 |
+
|
17 |
+
## π Demo
|
18 |
+
|
19 |
+
**Live API**: [https://huggingface.co/spaces/kurakula-Prashanth2004/door-window-detection](https://huggingface.co/spaces/kurakula-Prashanth2004/door-window-detection)
|
20 |
+
|
21 |
+
**GitHub Repository**: [https://github.com/kurakula-prashanth/door-window-detection](https://github.com/kurakula-prashanth/door-window-detection)
|
22 |
+
|
23 |
+
## π Project Overview
|
24 |
+
|
25 |
+
This project implements a complete machine learning pipeline for detecting doors and windows in architectural blueprints:
|
26 |
+
|
27 |
+
1. **Manual Data Labeling** - Created custom dataset with bounding box annotations
|
28 |
+
2. **Model Training** - Trained YOLOv8 model from scratch using only custom-labeled data
|
29 |
+
3. **API Development** - Built FastAPI service with dual response modes (JSON + annotated images)
|
30 |
+
4. **Deployment** - Deployed to Hugging Face Spaces with Docker
|
31 |
+
|
32 |
+
## π― Classes Detected
|
33 |
+
|
34 |
+
- `door` - Door symbols in blueprints
|
35 |
+
- `window` - Window symbols in blueprints
|
36 |
+
|
37 |
+
## β¨ Key Features
|
38 |
+
|
39 |
+
- **Dual Response Modes**: Get JSON data or annotated images
|
40 |
+
- **Interactive Swagger UI**: Built-in API documentation at `/docs`
|
41 |
+
- **Smart Image Processing**: Automatic resizing for large images (max 1280px)
|
42 |
+
- **GPU Acceleration**: CUDA support with FP16 precision
|
43 |
+
- **Async Processing**: Non-blocking inference with ThreadPoolExecutor
|
44 |
+
- **Dynamic Color Coding**: Consistent colors for each detection class
|
45 |
+
- **Confidence Filtering**: Configurable confidence thresholds (default: 0.5)
|
46 |
+
|
47 |
+
## π οΈ Setup & Installation
|
48 |
+
|
49 |
+
### Local Development
|
50 |
+
|
51 |
+
1. **Clone the repository**
|
52 |
+
```bash
|
53 |
+
git clone https://github.com/kurakula-prashanth/door-window-detection.git
|
54 |
+
cd door-window-detection
|
55 |
+
```
|
56 |
+
|
57 |
+
2. **Create virtual environment**
|
58 |
+
```bash
|
59 |
+
python3.12 -m venv yolo8_custom
|
60 |
+
source yolo8_custom/bin/activate # On Windows: yolo8_custom\Scripts\activate
|
61 |
+
```
|
62 |
+
|
63 |
+
3. **Install dependencies**
|
64 |
+
```bash
|
65 |
+
pip install -r requirements.txt
|
66 |
+
```
|
67 |
+
|
68 |
+
4. **Run the API locally**
|
69 |
+
```bash
|
70 |
+
uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
71 |
+
```
|
72 |
+
|
73 |
+
5. **Access the API**
|
74 |
+
- **Interactive Documentation**: http://localhost:8000/docs
|
75 |
+
- **API Endpoint**: http://localhost:8000/predict
|
76 |
+
|
77 |
+
## π Training Process
|
78 |
+
|
79 |
+
### Step 1: Data Labeling
|
80 |
+
- Used **LabelImg** for manual annotation
|
81 |
+
- Labeled 15-20 construction blueprint images
|
82 |
+
- Created bounding boxes for doors and windows only
|
83 |
+
- Generated YOLO format labels (.txt files)
|
84 |
+
|
85 |
+

|
86 |
+
|
87 |
+

|
88 |
+
|
89 |
+

|
90 |
+
|
91 |
+

|
92 |
+
|
93 |
+
### Step 2: Model Training
|
94 |
+
```bash
|
95 |
+
yolo task=detect mode=train epochs=100 data=data_custom.yaml model=yolov8m.pt imgsz=640
|
96 |
+
```
|
97 |
+
**Training Configuration:**
|
98 |
+
- Base Model: YOLOv8 Medium (yolov8m.pt)
|
99 |
+
- Epochs: 100
|
100 |
+
- Image Size: 640x640
|
101 |
+
- Classes: 2 (door, window)
|
102 |
+
|
103 |
+

|
104 |
+
|
105 |
+

|
106 |
+
|
107 |
+

|
108 |
+
|
109 |
+

|
110 |
+
|
111 |
+
### Step 3: Model Testing
|
112 |
+
```bash
|
113 |
+
yolo task=detect mode=predict model=best.pt show=true conf=0.5 source=12.png line_thickness=1
|
114 |
+
```
|
115 |
+

|
116 |
+
|
117 |
+

|
118 |
+
|
119 |
+
## π API Usage
|
120 |
+
|
121 |
+
### Main Endpoint
|
122 |
+
```
|
123 |
+
POST /predict
|
124 |
+
```
|
125 |
+
|
126 |
+
### Parameters
|
127 |
+
- **file** (required): Upload PNG or JPG image (max 10MB)
|
128 |
+
- **response_type** (required): Choose between `json` or `image`
|
129 |
+
|
130 |
+
### Response Modes
|
131 |
+
|
132 |
+
#### 1. JSON Response (`response_type=json`)
|
133 |
+
Returns detection data in JSON format:
|
134 |
+
|
135 |
+
```json
|
136 |
+
{
|
137 |
+
"detections": [
|
138 |
+
{
|
139 |
+
"label": "door",
|
140 |
+
"confidence": 0.91,
|
141 |
+
"bbox": [x, y, width, height]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"label": "window",
|
145 |
+
"confidence": 0.84,
|
146 |
+
"bbox": [x, y, width, height]
|
147 |
+
}
|
148 |
+
]
|
149 |
+
}
|
150 |
+
```
|
151 |
+
|
152 |
+
#### 2. Image Response (`response_type=image`)
|
153 |
+
Returns annotated PNG image with:
|
154 |
+
- Bounding boxes around detected objects
|
155 |
+
- Labels with confidence scores
|
156 |
+
- Color-coded detection classes
|
157 |
+
- Detection count in response headers
|
158 |
+
|
159 |
+
|
160 |
+

|
161 |
+
|
162 |
+

|
163 |
+
|
164 |
+

|
165 |
+
|
166 |
+
### Usage Examples
|
167 |
+
|
168 |
+
#### cURL - JSON Response
|
169 |
+
```bash
|
170 |
+
curl -X POST "https://huggingface.co/spaces/kurakula-Prashanth2004/door-window-detection/predict" \
|
171 |
+
-F "file=@your_blueprint.png" \
|
172 |
+
-F "response_type=json"
|
173 |
+
```
|
174 |
+
|
175 |
+
#### cURL - Image Response
|
176 |
+
```bash
|
177 |
+
curl -X POST "https://huggingface.co/spaces/kurakula-Prashanth2004/door-window-detection/predict" \
|
178 |
+
-F "file=@your_blueprint.png" \
|
179 |
+
-F "response_type=image" \
|
180 |
+
--output detected_result.png
|
181 |
+
```
|
182 |
+
|
183 |
+
#### Python - JSON Response
|
184 |
+
```python
|
185 |
+
import requests
|
186 |
+
|
187 |
+
url = "https://huggingface.co/spaces/kurakula-Prashanth2004/door-window-detection/predict"
|
188 |
+
files = {"file": open("blueprint.png", "rb")}
|
189 |
+
data = {"response_type": "json"}
|
190 |
+
|
191 |
+
response = requests.post(url, files=files, data=data)
|
192 |
+
detections = response.json()["detections"]
|
193 |
+
print(f"Found {len(detections)} objects")
|
194 |
+
```
|
195 |
+
|
196 |
+
#### Python - Image Response
|
197 |
+
```python
|
198 |
+
import requests
|
199 |
+
|
200 |
+
url = "https://huggingface.co/spaces/kurakula-Prashanth2004/door-window-detection/predict"
|
201 |
+
files = {"file": open("blueprint.png", "rb")}
|
202 |
+
data = {"response_type": "image"}
|
203 |
+
|
204 |
+
response = requests.post(url, files=files, data=data)
|
205 |
+
with open("annotated_result.png", "wb") as f:
|
206 |
+
f.write(response.content)
|
207 |
+
```
|
208 |
+
|
209 |
+
## π³ Docker Deployment
|
210 |
+
|
211 |
+
The application is containerized using Docker:
|
212 |
+
|
213 |
+
```dockerfile
|
214 |
+
FROM python:3.10-slim
|
215 |
+
|
216 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
217 |
+
ENV PYTHONUNBUFFERED=1
|
218 |
+
|
219 |
+
WORKDIR /app
|
220 |
+
|
221 |
+
# Install system dependencies
|
222 |
+
RUN apt-get update && apt-get install -y \
|
223 |
+
libglib2.0-0 libgl1-mesa-glx \
|
224 |
+
&& rm -rf /var/lib/apt/lists/*
|
225 |
+
|
226 |
+
# Install Python dependencies
|
227 |
+
COPY requirements.txt .
|
228 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
229 |
+
|
230 |
+
COPY . .
|
231 |
+
|
232 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
233 |
+
```
|
234 |
+
|
235 |
+
## π¦ Dependencies
|
236 |
+
|
237 |
+
```txt
|
238 |
+
fastapi
|
239 |
+
uvicorn
|
240 |
+
ultralytics
|
241 |
+
opencv-python-headless
|
242 |
+
pillow
|
243 |
+
torch
|
244 |
+
numpy
|
245 |
+
python-multipart
|
246 |
+
```
|
247 |
+
|
248 |
+
## β‘ Performance Features
|
249 |
+
|
250 |
+
- **GPU Acceleration**: Automatically uses CUDA if available with FP16 precision
|
251 |
+
- **Model Warmup**: Dummy inference on startup for faster first request
|
252 |
+
- **Async Processing**: Non-blocking image processing with ThreadPoolExecutor (2 workers)
|
253 |
+
- **Smart Resizing**: Large images automatically resized to max 1280px
|
254 |
+
- **Memory Efficient**: Optimized for production deployment
|
255 |
+
- **Confidence Thresholding**: Filters low-confidence detections (β₯0.5)
|
256 |
+
- **IoU Filtering**: Non-maximum suppression with 0.45 threshold
|
257 |
+
- **Color Consistency**: Hash-based color generation for detection labels
|
258 |
+
|
259 |
+
## π Project Structure
|
260 |
+
|
261 |
+
```
|
262 |
+
door-window-detection/
|
263 |
+
βββ app.py # FastAPI application
|
264 |
+
βββ requirements.txt # Python dependencies
|
265 |
+
βββ Dockerfile # Container configuration
|
266 |
+
βββ yolov8m_custom.pt # Trained model weights
|
267 |
+
βββ data_custom.yaml # Training configuration
|
268 |
+
βββ classes.txt # Class names
|
269 |
+
βββ datasets/ # Training data
|
270 |
+
β βββ images/
|
271 |
+
β βββ labels/
|
272 |
+
βββ README.md # This file
|
273 |
+
```
|
274 |
+
|
275 |
+
## π Model Configuration
|
276 |
+
|
277 |
+
- **Architecture**: YOLOv8 Medium (yolov8m_custom.pt)
|
278 |
+
- **Input Processing**: Auto-resize to max 1280px, maintains aspect ratio
|
279 |
+
- **Inference Settings**:
|
280 |
+
- Confidence Threshold: 0.5
|
281 |
+
- IoU Threshold: 0.45
|
282 |
+
- Max Detections: 100
|
283 |
+
- Half Precision: Enabled on GPU
|
284 |
+
- **Classes**: 2 (door, window)
|
285 |
+
- **Training Data**: Custom-labeled blueprint images
|
286 |
+
|
287 |
+
## π¨ Visual Features
|
288 |
+
|
289 |
+
- **Dynamic Bounding Boxes**: Color-coded by detection class
|
290 |
+
- **Confidence Labels**: Shows class name and confidence score
|
291 |
+
- **Hash-based Colors**: Consistent colors for each label type
|
292 |
+
- **High-Quality Output**: PNG format with preserved image quality
|
293 |
+
|
294 |
+
## π§ API Configuration
|
295 |
+
|
296 |
+
- **File Size Limit**: 10MB maximum
|
297 |
+
- **Supported Formats**: JPG, PNG
|
298 |
+
- **Concurrent Processing**: 2 worker threads
|
299 |
+
- **Response Headers**: Include detection count metadata
|
300 |
+
- **Error Handling**: Comprehensive validation and error messages
|
301 |
+
|
302 |
+
## π Results & Screenshots
|
303 |
+
|
304 |
+
### Training Progress
|
305 |
+
- Loss curves and training metrics
|
306 |
+
- Model performance on validation set
|
307 |
+
- Convergence after 100 epochs
|
308 |
+
|
309 |
+
#### Confusion Matrix
|
310 |
+
|
311 |
+

|
312 |
+
|
313 |
+
#### Confusion Matrix Normalized
|
314 |
+
|
315 |
+

|
316 |
+
|
317 |
+
#### Confusion F1 Curve
|
318 |
+
|
319 |
+

|
320 |
+
|
321 |
+
#### labels
|
322 |
+
|
323 |
+

|
324 |
+
|
325 |
+
#### P_curve
|
326 |
+
|
327 |
+

|
328 |
+
|
329 |
+
#### PR_Curve
|
330 |
+
|
331 |
+

|
332 |
+
|
333 |
+
#### R Curve
|
334 |
+
|
335 |
+

|
336 |
+
|
337 |
+
#### Results
|
338 |
+
|
339 |
+

|
340 |
+
|
341 |
+
### API Responses
|
342 |
+
|
343 |
+
- JSON detection data examples
|
344 |
+
|
345 |
+

|
346 |
+
|
347 |
+
|
348 |
+
- Annotated image outputs
|
349 |
+
|
350 |
+

|
351 |
+
|
352 |
+
- Performance benchmarks
|
353 |
+
|
354 |
+
### Interactive Documentation
|
355 |
+
- Swagger UI at `/docs`
|
356 |
+
- Parameter descriptions
|
357 |
+
- Live API testing interface
|
358 |
+
|
359 |
+

|
360 |
+
|
361 |
+
|
362 |
+
## π€ Contributing
|
363 |
+
|
364 |
+
1. Fork the repository
|
365 |
+
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
|
366 |
+
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
|
367 |
+
4. Push to the branch (`git push origin feature/AmazingFeature`)
|
368 |
+
5. Open a Pull Request
|
369 |
+
|
370 |
+
## π License
|
371 |
+
|
372 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
373 |
+
|
374 |
+
## π Acknowledgments
|
375 |
+
|
376 |
+
- YOLOv8 by Ultralytics
|
377 |
+
- FastAPI framework
|
378 |
+
- Hugging Face Spaces for deployment
|
379 |
+
- LabelImg for annotation tool
|