Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
-
|
5 |
-
#
|
|
|
|
|
|
|
6 |
client = InferenceClient(
|
7 |
-
model="
|
8 |
-
token=HF_Token
|
9 |
)
|
10 |
|
11 |
def respond(
|
@@ -17,7 +20,7 @@ def respond(
|
|
17 |
top_p,
|
18 |
):
|
19 |
"""
|
20 |
-
Generate responses
|
21 |
|
22 |
Args:
|
23 |
message (str): The current user input message
|
@@ -29,17 +32,14 @@ def respond(
|
|
29 |
"""
|
30 |
# Format the conversation history into messages
|
31 |
messages = [{"role": "system", "content": system_message}]
|
32 |
-
|
33 |
for val in history:
|
34 |
if val[0]:
|
35 |
messages.append({"role": "user", "content": val[0]})
|
36 |
if val[1]:
|
37 |
messages.append({"role": "assistant", "content": val[1]})
|
38 |
-
|
39 |
messages.append({"role": "user", "content": message})
|
40 |
-
|
41 |
response = ""
|
42 |
-
|
43 |
# Stream the response tokens
|
44 |
for message in client.chat_completion(
|
45 |
messages,
|
@@ -57,34 +57,41 @@ demo = gr.ChatInterface(
|
|
57 |
respond,
|
58 |
additional_inputs=[
|
59 |
gr.Textbox(
|
60 |
-
value="You are
|
61 |
label="System message"
|
62 |
),
|
63 |
gr.Slider(
|
64 |
minimum=1,
|
65 |
maximum=2048,
|
66 |
-
value=
|
67 |
step=1,
|
68 |
label="Max new tokens"
|
69 |
),
|
70 |
gr.Slider(
|
71 |
minimum=0.1,
|
72 |
-
maximum=
|
73 |
-
value=0.
|
74 |
step=0.1,
|
75 |
label="Temperature"
|
76 |
),
|
77 |
gr.Slider(
|
78 |
minimum=0.1,
|
79 |
maximum=1.0,
|
80 |
-
value=0.
|
81 |
step=0.05,
|
82 |
label="Top-p (nucleus sampling)"
|
83 |
),
|
84 |
],
|
85 |
-
title="
|
86 |
-
description="A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
-
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
+
|
5 |
+
# Get your Hugging Face token from environment variables
|
6 |
+
HF_Token = os.getenv("HF_TOKEN")
|
7 |
+
|
8 |
+
# Initialize the inference client with a coding specialized model
|
9 |
client = InferenceClient(
|
10 |
+
model="bigcode/starcoder2-15b", # Using StarCoder2 which excels at code generation
|
11 |
+
token=HF_Token
|
12 |
)
|
13 |
|
14 |
def respond(
|
|
|
20 |
top_p,
|
21 |
):
|
22 |
"""
|
23 |
+
Generate coding-focused responses using the selected model.
|
24 |
|
25 |
Args:
|
26 |
message (str): The current user input message
|
|
|
32 |
"""
|
33 |
# Format the conversation history into messages
|
34 |
messages = [{"role": "system", "content": system_message}]
|
|
|
35 |
for val in history:
|
36 |
if val[0]:
|
37 |
messages.append({"role": "user", "content": val[0]})
|
38 |
if val[1]:
|
39 |
messages.append({"role": "assistant", "content": val[1]})
|
|
|
40 |
messages.append({"role": "user", "content": message})
|
41 |
+
|
42 |
response = ""
|
|
|
43 |
# Stream the response tokens
|
44 |
for message in client.chat_completion(
|
45 |
messages,
|
|
|
57 |
respond,
|
58 |
additional_inputs=[
|
59 |
gr.Textbox(
|
60 |
+
value="You are an expert coding assistant. Provide detailed, correct, and efficient code solutions with explanations.",
|
61 |
label="System message"
|
62 |
),
|
63 |
gr.Slider(
|
64 |
minimum=1,
|
65 |
maximum=2048,
|
66 |
+
value=1024,
|
67 |
step=1,
|
68 |
label="Max new tokens"
|
69 |
),
|
70 |
gr.Slider(
|
71 |
minimum=0.1,
|
72 |
+
maximum=1.0,
|
73 |
+
value=0.5,
|
74 |
step=0.1,
|
75 |
label="Temperature"
|
76 |
),
|
77 |
gr.Slider(
|
78 |
minimum=0.1,
|
79 |
maximum=1.0,
|
80 |
+
value=0.9,
|
81 |
step=0.05,
|
82 |
label="Top-p (nucleus sampling)"
|
83 |
),
|
84 |
],
|
85 |
+
title="Coding Expert Assistant",
|
86 |
+
description="A specialized coding assistant powered by StarCoder2, a model trained on code repositories",
|
87 |
+
examples=[
|
88 |
+
"Write a Python function to find the longest palindromic substring",
|
89 |
+
"Create a React component that displays a color picker",
|
90 |
+
"How do I implement quicksort in JavaScript?",
|
91 |
+
"Explain the difference between Promise.all and Promise.allSettled in JavaScript",
|
92 |
+
"Generate a Python script to download and process CSV data from an API"
|
93 |
+
]
|
94 |
)
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
+
demo.launch(share=True)
|