Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,10 @@ import time
|
|
7 |
import numpy as np
|
8 |
import cv2
|
9 |
from PIL import Image
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def process_controlnet_img(image):
|
12 |
controlnet_img = np.array(image)
|
@@ -20,27 +24,12 @@ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
|
|
20 |
#pipe.enable_model_cpu_offload()
|
21 |
t5_slider = T5SliderFlux(pipe, device=torch.device("cuda"))
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# controlnet = ControlNetModel.from_pretrained(
|
31 |
-
# "xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet
|
32 |
-
# torch_dtype=torch.float16
|
33 |
-
# )
|
34 |
-
# vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
35 |
-
# pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
|
36 |
-
# "sd-community/sdxl-flash",
|
37 |
-
# controlnet=controlnet,
|
38 |
-
# vae=vae,
|
39 |
-
# torch_dtype=torch.float16,
|
40 |
-
# )
|
41 |
-
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
42 |
-
|
43 |
-
# clip_slider_inv = CLIPSliderXL_inv(sd_pipe=pipe_inv,device=torch.device("cuda"))
|
44 |
|
45 |
@spaces.GPU(duration=120)
|
46 |
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale,
|
@@ -72,7 +61,7 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale
|
|
72 |
|
73 |
if img2img_type=="controlnet canny" and img is not None:
|
74 |
control_img = process_controlnet_img(img)
|
75 |
-
image =
|
76 |
elif img2img_type=="ip adapter" and img is not None:
|
77 |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
78 |
else: # text to image
|
@@ -98,7 +87,7 @@ def update_scales(x,y,prompt,seed, steps, guidance_scale,
|
|
98 |
avg_diff_2nd = avg_diff_y.cuda()
|
99 |
if img2img_type=="controlnet canny" and img is not None:
|
100 |
control_img = process_controlnet_img(img)
|
101 |
-
image =
|
102 |
elif img2img_type=="ip adapter" and img is not None:
|
103 |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
104 |
else:
|
@@ -197,7 +186,7 @@ with gr.Blocks(css=css) as demo:
|
|
197 |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
198 |
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
199 |
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
200 |
-
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="")
|
201 |
prompt_a = gr.Textbox(label="Prompt")
|
202 |
submit_a = gr.Button("Submit")
|
203 |
with gr.Column():
|
@@ -231,6 +220,7 @@ with gr.Blocks(css=css) as demo:
|
|
231 |
maximum=5.0,
|
232 |
step=0.1,
|
233 |
value=0.8,
|
|
|
234 |
)
|
235 |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
236 |
|
|
|
7 |
import numpy as np
|
8 |
import cv2
|
9 |
from PIL import Image
|
10 |
+
from diffusers.utils import load_image
|
11 |
+
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
|
12 |
+
from diffusers.models.controlnet_flux import FluxControlNetModel
|
13 |
+
|
14 |
|
15 |
def process_controlnet_img(image):
|
16 |
controlnet_img = np.array(image)
|
|
|
24 |
#pipe.enable_model_cpu_offload()
|
25 |
t5_slider = T5SliderFlux(pipe, device=torch.device("cuda"))
|
26 |
|
27 |
+
base_model = 'black-forest-labs/FLUX.1-schnell'
|
28 |
+
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
29 |
+
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
30 |
+
pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
31 |
+
t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
32 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
@spaces.GPU(duration=120)
|
35 |
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale,
|
|
|
61 |
|
62 |
if img2img_type=="controlnet canny" and img is not None:
|
63 |
control_img = process_controlnet_img(img)
|
64 |
+
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
65 |
elif img2img_type=="ip adapter" and img is not None:
|
66 |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
67 |
else: # text to image
|
|
|
87 |
avg_diff_2nd = avg_diff_y.cuda()
|
88 |
if img2img_type=="controlnet canny" and img is not None:
|
89 |
control_img = process_controlnet_img(img)
|
90 |
+
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
91 |
elif img2img_type=="ip adapter" and img is not None:
|
92 |
image = t5_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
93 |
else:
|
|
|
186 |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
187 |
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
188 |
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
|
189 |
+
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny")
|
190 |
prompt_a = gr.Textbox(label="Prompt")
|
191 |
submit_a = gr.Button("Submit")
|
192 |
with gr.Column():
|
|
|
220 |
maximum=5.0,
|
221 |
step=0.1,
|
222 |
value=0.8,
|
223 |
+
visible=False
|
224 |
)
|
225 |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
226 |
|