import numpy as np import pickle as pkl import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input from tensorflow.keras.preprocessing import image from tensorflow.keras.layers import GlobalMaxPool2D from sklearn.neighbors import NearestNeighbors import os from numpy.linalg import norm import streamlit as st st.header('Fashion Recommendation System') # Load precomputed features Image_features = pkl.load(open('Images_features.pkl', 'rb')) filenames = pkl.load(open('filenames.pkl', 'rb')) # Feature extraction function def extract_features_from_images(image_path, model): img = image.load_img(image_path, target_size=(224, 224)) img_array = image.img_to_array(img) img_expand_dim = np.expand_dims(img_array, axis=0) img_preprocess = preprocess_input(img_expand_dim) result = model.predict(img_preprocess).flatten() norm_result = result / norm(result) return norm_result # Load ResNet50 model model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) model.trainable = False model = tf.keras.models.Sequential([model, GlobalMaxPool2D()]) # Nearest Neighbors Model neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean') neighbors.fit(Image_features) # Upload Image upload_file = st.file_uploader("Upload Image") if upload_file is not None: upload_path = os.path.join('/tmp', upload_file.name) # Use /tmp instead of 'upload/' with open(upload_path, 'wb') as f: f.write(upload_file.getbuffer()) st.subheader('Uploaded Image') st.image(upload_file) # Extract features input_img_features = extract_features_from_images(upload_path, model) # Get recommendations distance, indices = neighbors.kneighbors([input_img_features]) # Display Recommended Images st.subheader('Recommended Images') col1, col2, col3, col4, col5 = st.columns(5) with col1: st.image(filenames[indices[0][1]]) with col2: st.image(filenames[indices[0][2]]) with col3: st.image(filenames[indices[0][3]]) with col4: st.image(filenames[indices[0][4]]) with col5: st.image(filenames[indices[0][5]])