diff --git a/app.py b/app.py index 4723218a6cfa702e12317ef2aa1ed6f41c59cc1b..696995c9526555792cd00345fd42d9e0f0510f9d 100644 --- a/app.py +++ b/app.py @@ -29,7 +29,7 @@ import gc import time from visual_util import predictions_to_glb -from vggt.models.vggt import VGGT +from streamvggt.models.streamvggt import StreamVGGT from vggt.utils.load_fn import load_and_preprocess_images from vggt.utils.pose_enc import pose_encoding_to_extri_intri from vggt.utils.geometry import unproject_depth_map_to_point_map @@ -45,7 +45,7 @@ path = hf_hub_download( revision="main", force_download=True ) -model = VGGT(use_causal_global=True, use_distil=True) +model = StreamVGGT() ckpt = torch.load(path, map_location=device) model.load_state_dict(ckpt, strict=True) model = model.to(device) diff --git a/streamvggt/heads/camera_head.py b/streamvggt/heads/camera_head.py new file mode 100644 index 0000000000000000000000000000000000000000..3c2ff373b4bdb9f5ee017fdb491fb114c8116ba7 --- /dev/null +++ b/streamvggt/heads/camera_head.py @@ -0,0 +1,175 @@ +import math +import numpy as np + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from streamvggt.layers import Mlp +from streamvggt.layers.block import Block +from streamvggt.heads.head_act import activate_pose + + +class CameraHead(nn.Module): + def __init__( + self, + dim_in: int = 2048, + trunk_depth: int = 4, + pose_encoding_type: str = "absT_quaR_FoV", + num_heads: int = 16, + mlp_ratio: int = 4, + init_values: float = 0.01, + trans_act: str = "linear", + quat_act: str = "linear", + fl_act: str = "relu", # Field of view activations: ensures FOV values are positive. + ): + super().__init__() + + if pose_encoding_type == "absT_quaR_FoV": + self.target_dim = 9 + else: + raise ValueError(f"Unsupported camera encoding type: {pose_encoding_type}") + + self.trans_act = trans_act + self.quat_act = quat_act + self.fl_act = fl_act + self.trunk_depth = trunk_depth + + # Build the trunk using a sequence of transformer blocks. + self.trunk = nn.Sequential( + *[ + Block( + dim=dim_in, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + init_values=init_values, + ) + for _ in range(trunk_depth) + ] + ) + + # Normalizations for camera token and trunk output. + self.token_norm = nn.LayerNorm(dim_in) + self.trunk_norm = nn.LayerNorm(dim_in) + + # Learnable empty camera pose token. + self.empty_pose_tokens = nn.Parameter(torch.zeros(1, 1, self.target_dim)) + self.embed_pose = nn.Linear(self.target_dim, dim_in) + + # Module for producing modulation parameters: shift, scale, and a gate. + self.poseLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim_in, 3 * dim_in, bias=True)) + + # Adaptive layer normalization without affine parameters. + self.adaln_norm = nn.LayerNorm(dim_in, elementwise_affine=False, eps=1e-6) + self.pose_branch = Mlp( + in_features=dim_in, + hidden_features=dim_in // 2, + out_features=self.target_dim, + drop=0, + ) + + def forward(self, aggregated_tokens_list: list, num_iterations: int = 4, past_key_values_camera = None, use_cache: bool = False) -> list: + """ + Forward pass to predict camera parameters. + + Args: + aggregated_tokens_list (list): List of token tensors from the network; + the last tensor is used for prediction. + num_iterations (int, optional): Number of iterative refinement steps. Defaults to 4. + + Returns: + list: A list of predicted camera encodings (post-activation) from each iteration. + """ + # Use tokens from the last block for camera prediction. + tokens = aggregated_tokens_list[-1] + + # Extract the camera tokens + pose_tokens = tokens[:, :, 0] + pose_tokens = self.token_norm(pose_tokens) + + if use_cache: + pred_pose_enc_list, past_key_values_camera = self.trunk_fn(pose_tokens, num_iterations, past_key_values_camera, use_cache) + return pred_pose_enc_list, past_key_values_camera + else: + pred_pose_enc_list = self.trunk_fn(pose_tokens, num_iterations, past_key_values_camera=None, use_cache=use_cache) + return pred_pose_enc_list + + def trunk_fn(self, pose_tokens: torch.Tensor, num_iterations: int, past_key_values_camera, use_cache: bool) -> list: + """ + Iteratively refine camera pose predictions. + + Args: + pose_tokens (torch.Tensor): Normalized camera tokens with shape [B, 1, C]. + num_iterations (int): Number of refinement iterations. + + Returns: + list: List of activated camera encodings from each iteration. + """ + B, S, C = pose_tokens.shape # S is expected to be 1. + pred_pose_enc = None + pred_pose_enc_list = [] + + for _ in range(num_iterations): + # Use a learned empty pose for the first iteration. + if pred_pose_enc is None: + module_input = self.embed_pose(self.empty_pose_tokens.expand(B, S, -1)) + else: + # Detach the previous prediction to avoid backprop through time. + pred_pose_enc = pred_pose_enc.detach() + module_input = self.embed_pose(pred_pose_enc) + + # Generate modulation parameters and split them into shift, scale, and gate components. + shift_msa, scale_msa, gate_msa = self.poseLN_modulation(module_input).chunk(3, dim=-1) + + # Adaptive layer normalization and modulation. + pose_tokens_modulated = gate_msa * modulate(self.adaln_norm(pose_tokens), shift_msa, scale_msa) + pose_tokens_modulated = pose_tokens_modulated + pose_tokens + + if not use_cache: + L = S * 1 + frame_ids = torch.arange(L, device=pose_tokens_modulated.device) // 1 # [0,0,...,1,1,...,S-1] + future_frame = frame_ids.unsqueeze(1) < frame_ids.unsqueeze(0) + attn_mask = future_frame.to(pose_tokens_modulated.dtype) * torch.finfo(pose_tokens_modulated.dtype).min + else: + attn_mask = None + + if use_cache: + for idx in range(self.trunk_depth): + pose_tokens_modulated, block_kv = self.trunk[idx]( + pose_tokens_modulated, + attn_mask=attn_mask, + past_key_values=past_key_values_camera[idx] if past_key_values_camera[idx] is not None else None, + use_cache=True + ) + past_key_values_camera[idx] = block_kv + else: + for idx in range(self.trunk_depth): + pose_tokens_modulated = self.trunk[idx](pose_tokens_modulated, attn_mask=attn_mask) + + # Compute the delta update for the pose encoding. + pred_pose_enc_delta = self.pose_branch(self.trunk_norm(pose_tokens_modulated)) + + if pred_pose_enc is None: + pred_pose_enc = pred_pose_enc_delta + else: + pred_pose_enc = pred_pose_enc + pred_pose_enc_delta + + # Apply final activation functions for translation, quaternion, and field-of-view. + activated_pose = activate_pose( + pred_pose_enc, + trans_act=self.trans_act, + quat_act=self.quat_act, + fl_act=self.fl_act, + ) + pred_pose_enc_list.append(activated_pose) + + if use_cache: + return pred_pose_enc_list, past_key_values_camera + return pred_pose_enc_list + + +def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor: + """ + Modulate the input tensor using scaling and shifting parameters. + """ + return x * (1 + scale) + shift diff --git a/streamvggt/heads/dpt_head.py b/streamvggt/heads/dpt_head.py new file mode 100644 index 0000000000000000000000000000000000000000..bfddbc6d68cc9dfeb7c8fe95095c489fbb9e3804 --- /dev/null +++ b/streamvggt/heads/dpt_head.py @@ -0,0 +1,472 @@ +import os +from typing import List, Dict, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from .head_act import activate_head +from .utils import create_uv_grid, position_grid_to_embed + + +class DPTHead(nn.Module): + """ + Args: + dim_in (int): Input dimension (channels). + patch_size (int, optional): Patch size. Default is 14. + output_dim (int, optional): Number of output channels. Default is 4. + activation (str, optional): Activation type. Default is "inv_log". + conf_activation (str, optional): Confidence activation type. Default is "expp1". + features (int, optional): Feature channels for intermediate representations. Default is 256. + out_channels (List[int], optional): Output channels for each intermediate layer. + intermediate_layer_idx (List[int], optional): Indices of layers from aggregated tokens used for DPT. + pos_embed (bool, optional): Whether to use positional embedding. Default is True. + feature_only (bool, optional): If True, return features only without the last several layers and activation head. Default is False. + down_ratio (int, optional): Downscaling factor for the output resolution. Default is 1. + """ + + def __init__( + self, + dim_in: int, + patch_size: int = 14, + output_dim: int = 4, + activation: str = "inv_log", + conf_activation: str = "expp1", + features: int = 256, + out_channels: List[int] = [256, 512, 1024, 1024], + intermediate_layer_idx: List[int] = [4, 11, 17, 23], + pos_embed: bool = True, + feature_only: bool = False, + down_ratio: int = 1, + ) -> None: + super(DPTHead, self).__init__() + self.patch_size = patch_size + self.activation = activation + self.conf_activation = conf_activation + self.pos_embed = pos_embed + self.feature_only = feature_only + self.down_ratio = down_ratio + self.intermediate_layer_idx = intermediate_layer_idx + + self.norm = nn.LayerNorm(dim_in) + + # Projection layers for each output channel from tokens. + self.projects = nn.ModuleList( + [ + nn.Conv2d( + in_channels=dim_in, + out_channels=oc, + kernel_size=1, + stride=1, + padding=0, + ) + for oc in out_channels + ] + ) + + # Resize layers for upsampling feature maps. + self.resize_layers = nn.ModuleList( + [ + nn.ConvTranspose2d( + in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0 + ), + nn.ConvTranspose2d( + in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0 + ), + nn.Identity(), + nn.Conv2d( + in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1 + ), + ] + ) + + self.scratch = _make_scratch( + out_channels, + features, + expand=False, + ) + + # Attach additional modules to scratch. + self.scratch.stem_transpose = None + self.scratch.refinenet1 = _make_fusion_block(features) + self.scratch.refinenet2 = _make_fusion_block(features) + self.scratch.refinenet3 = _make_fusion_block(features) + self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False) + + head_features_1 = features + head_features_2 = 32 + + if feature_only: + self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1) + else: + self.scratch.output_conv1 = nn.Conv2d( + head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1 + ) + conv2_in_channels = head_features_1 // 2 + + self.scratch.output_conv2 = nn.Sequential( + nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0), + ) + + def forward( + self, + aggregated_tokens_list: List[torch.Tensor], + images: torch.Tensor, + patch_start_idx: int, + frames_chunk_size: int = 8, + ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: + """ + Forward pass through the DPT head, supports processing by chunking frames. + Args: + aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers. + images (Tensor): Input images with shape [B, S, 3, H, W], in range [0, 1]. + patch_start_idx (int): Starting index for patch tokens in the token sequence. + Used to separate patch tokens from other tokens (e.g., camera or register tokens). + frames_chunk_size (int, optional): Number of frames to process in each chunk. + If None or larger than S, all frames are processed at once. Default: 8. + + Returns: + Tensor or Tuple[Tensor, Tensor]: + - If feature_only=True: Feature maps with shape [B, S, C, H, W] + - Otherwise: Tuple of (predictions, confidence) both with shape [B, S, 1, H, W] + """ + B, S, _, H, W = images.shape + + # If frames_chunk_size is not specified or greater than S, process all frames at once + if frames_chunk_size is None or frames_chunk_size >= S: + return self._forward_impl(aggregated_tokens_list, images, patch_start_idx) + + # Otherwise, process frames in chunks to manage memory usage + assert frames_chunk_size > 0 + + # Process frames in batches + all_preds = [] + all_conf = [] + + for frames_start_idx in range(0, S, frames_chunk_size): + frames_end_idx = min(frames_start_idx + frames_chunk_size, S) + + # Process batch of frames + if self.feature_only: + chunk_output = self._forward_impl( + aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx + ) + all_preds.append(chunk_output) + else: + chunk_preds, chunk_conf = self._forward_impl( + aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx + ) + all_preds.append(chunk_preds) + all_conf.append(chunk_conf) + + # Concatenate results along the sequence dimension + if self.feature_only: + return torch.cat(all_preds, dim=1) + else: + return torch.cat(all_preds, dim=1), torch.cat(all_conf, dim=1) + + def _forward_impl( + self, + aggregated_tokens_list: List[torch.Tensor], + images: torch.Tensor, + patch_start_idx: int, + frames_start_idx: int = None, + frames_end_idx: int = None, + ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: + """ + Args: + aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers. + images (Tensor): Input images with shape [B, S, 3, H, W]. + patch_start_idx (int): Starting index for patch tokens. + frames_start_idx (int, optional): Starting index for frames to process. + frames_end_idx (int, optional): Ending index for frames to process. + + Returns: + Tensor or Tuple[Tensor, Tensor]: Feature maps or (predictions, confidence). + """ + if frames_start_idx is not None and frames_end_idx is not None: + images = images[:, frames_start_idx:frames_end_idx].contiguous() + + B, S, _, H, W = images.shape + + patch_h, patch_w = H // self.patch_size, W // self.patch_size + + out = [] + dpt_idx = 0 + + for layer_idx in self.intermediate_layer_idx: + x = aggregated_tokens_list[layer_idx][:, :, patch_start_idx:] + + # Select frames if processing a chunk + if frames_start_idx is not None and frames_end_idx is not None: + x = x[:, frames_start_idx:frames_end_idx] + + x = x.reshape(B * S, -1, x.shape[-1]) + + x = self.norm(x) + + x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) + + x = self.projects[dpt_idx](x) + if self.pos_embed: + x = self._apply_pos_embed(x, W, H) + x = self.resize_layers[dpt_idx](x) + + out.append(x) + dpt_idx += 1 + + # Fuse features from multiple layers. + out = self.scratch_forward(out) + # Interpolate fused output to match target image resolution. + out = custom_interpolate( + out, + (int(patch_h * self.patch_size / self.down_ratio), int(patch_w * self.patch_size / self.down_ratio)), + mode="bilinear", + align_corners=True, + ) + + if self.pos_embed: + out = self._apply_pos_embed(out, W, H) + + if self.feature_only: + return out.reshape(B, S, *out.shape[1:]) + + out = self.scratch.output_conv2(out) + preds, conf = activate_head(out, activation=self.activation, conf_activation=self.conf_activation) + + preds = preds.reshape(B, S, *preds.shape[1:]) + conf = conf.reshape(B, S, *conf.shape[1:]) + return preds, conf + + def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor: + """ + Apply positional embedding to tensor x. + """ + patch_w = x.shape[-1] + patch_h = x.shape[-2] + pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device) + pos_embed = position_grid_to_embed(pos_embed, x.shape[1]) + pos_embed = pos_embed * ratio + pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1) + return x + pos_embed + + def scratch_forward(self, features: List[torch.Tensor]) -> torch.Tensor: + """ + Forward pass through the fusion blocks. + + Args: + features (List[Tensor]): List of feature maps from different layers. + + Returns: + Tensor: Fused feature map. + """ + layer_1, layer_2, layer_3, layer_4 = features + + layer_1_rn = self.scratch.layer1_rn(layer_1) + layer_2_rn = self.scratch.layer2_rn(layer_2) + layer_3_rn = self.scratch.layer3_rn(layer_3) + layer_4_rn = self.scratch.layer4_rn(layer_4) + + out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) + del layer_4_rn, layer_4 + + out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:]) + del layer_3_rn, layer_3 + + out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:]) + del layer_2_rn, layer_2 + + out = self.scratch.refinenet1(out, layer_1_rn) + del layer_1_rn, layer_1 + + out = self.scratch.output_conv1(out) + return out + + +def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module: + return FeatureFusionBlock( + features, + nn.ReLU(inplace=True), + deconv=False, + bn=False, + expand=False, + align_corners=True, + size=size, + has_residual=has_residual, + groups=groups, + ) + + +def _make_scratch(in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module: + scratch = nn.Module() + out_shape1 = out_shape + out_shape2 = out_shape + out_shape3 = out_shape + if len(in_shape) >= 4: + out_shape4 = out_shape + + if expand: + out_shape1 = out_shape + out_shape2 = out_shape * 2 + out_shape3 = out_shape * 4 + if len(in_shape) >= 4: + out_shape4 = out_shape * 8 + + scratch.layer1_rn = nn.Conv2d( + in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups + ) + scratch.layer2_rn = nn.Conv2d( + in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups + ) + scratch.layer3_rn = nn.Conv2d( + in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups + ) + if len(in_shape) >= 4: + scratch.layer4_rn = nn.Conv2d( + in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups + ) + return scratch + + +class ResidualConvUnit(nn.Module): + """Residual convolution module.""" + + def __init__(self, features, activation, bn, groups=1): + """Init. + + Args: + features (int): number of features + """ + super().__init__() + + self.bn = bn + self.groups = groups + self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) + self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) + + self.norm1 = None + self.norm2 = None + + self.activation = activation + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, x): + """Forward pass. + + Args: + x (tensor): input + + Returns: + tensor: output + """ + + out = self.activation(x) + out = self.conv1(out) + if self.norm1 is not None: + out = self.norm1(out) + + out = self.activation(out) + out = self.conv2(out) + if self.norm2 is not None: + out = self.norm2(out) + + return self.skip_add.add(out, x) + + +class FeatureFusionBlock(nn.Module): + """Feature fusion block.""" + + def __init__( + self, + features, + activation, + deconv=False, + bn=False, + expand=False, + align_corners=True, + size=None, + has_residual=True, + groups=1, + ): + """Init. + + Args: + features (int): number of features + """ + super(FeatureFusionBlock, self).__init__() + + self.deconv = deconv + self.align_corners = align_corners + self.groups = groups + self.expand = expand + out_features = features + if self.expand == True: + out_features = features // 2 + + self.out_conv = nn.Conv2d( + features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups + ) + + if has_residual: + self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups) + + self.has_residual = has_residual + self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups) + + self.skip_add = nn.quantized.FloatFunctional() + self.size = size + + def forward(self, *xs, size=None): + """Forward pass. + + Returns: + tensor: output + """ + output = xs[0] + + if self.has_residual: + res = self.resConfUnit1(xs[1]) + output = self.skip_add.add(output, res) + + output = self.resConfUnit2(output) + + if (size is None) and (self.size is None): + modifier = {"scale_factor": 2} + elif size is None: + modifier = {"size": self.size} + else: + modifier = {"size": size} + + output = custom_interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners) + output = self.out_conv(output) + + return output + + +def custom_interpolate( + x: torch.Tensor, + size: Tuple[int, int] = None, + scale_factor: float = None, + mode: str = "bilinear", + align_corners: bool = True, +) -> torch.Tensor: + """ + Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate. + """ + if size is None: + size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor)) + + INT_MAX = 1610612736 + + input_elements = size[0] * size[1] * x.shape[0] * x.shape[1] + + if input_elements > INT_MAX: + chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0) + interpolated_chunks = [ + nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks + ] + x = torch.cat(interpolated_chunks, dim=0) + return x.contiguous() + else: + return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners) diff --git a/streamvggt/heads/head_act.py b/streamvggt/heads/head_act.py new file mode 100644 index 0000000000000000000000000000000000000000..14691c0d38a165cbc70a367e0142e3b13ea41db2 --- /dev/null +++ b/streamvggt/heads/head_act.py @@ -0,0 +1,116 @@ +import torch +import torch.nn.functional as F + + +def activate_pose(pred_pose_enc, trans_act="linear", quat_act="linear", fl_act="linear"): + """ + Args: + pred_pose_enc: Tensor containing encoded pose parameters [translation, quaternion, focal length] + trans_act: Activation type for translation component + quat_act: Activation type for quaternion component + fl_act: Activation type for focal length component + + Returns: + Activated pose parameters tensor + """ + T = pred_pose_enc[..., :3] + quat = pred_pose_enc[..., 3:7] + fl = pred_pose_enc[..., 7:] # or fov + + T = base_pose_act(T, trans_act) + quat = base_pose_act(quat, quat_act) + fl = base_pose_act(fl, fl_act) # or fov + + pred_pose_enc = torch.cat([T, quat, fl], dim=-1) + + return pred_pose_enc + + +def base_pose_act(pose_enc, act_type="linear"): + """ + Apply basic activation function to pose parameters. + + Args: + pose_enc: Tensor containing encoded pose parameters + act_type: Activation type ("linear", "inv_log", "exp", "relu") + + Returns: + Activated pose parameters + """ + if act_type == "linear": + return pose_enc + elif act_type == "inv_log": + return inverse_log_transform(pose_enc) + elif act_type == "exp": + return torch.exp(pose_enc) + elif act_type == "relu": + return F.relu(pose_enc) + else: + raise ValueError(f"Unknown act_type: {act_type}") + + +def activate_head(out, activation="norm_exp", conf_activation="expp1"): + """ + Process network output to extract 3D points and confidence values. + + Args: + out: Network output tensor (B, C, H, W) + activation: Activation type for 3D points + conf_activation: Activation type for confidence values + + Returns: + Tuple of (3D points tensor, confidence tensor) + """ + # Move channels from last dim to the 4th dimension => (B, H, W, C) + fmap = out.permute(0, 2, 3, 1) # B,H,W,C expected + + # Split into xyz (first C-1 channels) and confidence (last channel) + xyz = fmap[:, :, :, :-1] + conf = fmap[:, :, :, -1] + + if activation == "norm_exp": + d = xyz.norm(dim=-1, keepdim=True).clamp(min=1e-8) + xyz_normed = xyz / d + pts3d = xyz_normed * torch.expm1(d) + elif activation == "norm": + pts3d = xyz / xyz.norm(dim=-1, keepdim=True) + elif activation == "exp": + pts3d = torch.exp(xyz) + elif activation == "relu": + pts3d = F.relu(xyz) + elif activation == "inv_log": + pts3d = inverse_log_transform(xyz) + elif activation == "xy_inv_log": + xy, z = xyz.split([2, 1], dim=-1) + z = inverse_log_transform(z) + pts3d = torch.cat([xy * z, z], dim=-1) + elif activation == "sigmoid": + pts3d = torch.sigmoid(xyz) + elif activation == "linear": + pts3d = xyz + else: + raise ValueError(f"Unknown activation: {activation}") + + if conf_activation == "expp1": + conf_out = 1 + conf.exp() + elif conf_activation == "expp0": + conf_out = conf.exp() + elif conf_activation == "sigmoid": + conf_out = torch.sigmoid(conf) + else: + raise ValueError(f"Unknown conf_activation: {conf_activation}") + + return pts3d, conf_out + + +def inverse_log_transform(y): + """ + Apply inverse log transform: sign(y) * (exp(|y|) - 1) + + Args: + y: Input tensor + + Returns: + Transformed tensor + """ + return torch.sign(y) * (torch.expm1(torch.abs(y))) diff --git a/streamvggt/heads/track_head.py b/streamvggt/heads/track_head.py new file mode 100644 index 0000000000000000000000000000000000000000..eca62742213561cb7cb7c5f6c29d23233e816e41 --- /dev/null +++ b/streamvggt/heads/track_head.py @@ -0,0 +1,102 @@ +import torch.nn as nn +from .dpt_head import DPTHead +from .track_modules.base_track_predictor import BaseTrackerPredictor + + +class TrackHead(nn.Module): + """ + Track head that uses DPT head to process tokens and BaseTrackerPredictor for tracking. + The tracking is performed iteratively, refining predictions over multiple iterations. + """ + + def __init__( + self, + dim_in, + patch_size=14, + features=128, + iters=4, + predict_conf=True, + stride=2, + corr_levels=7, + corr_radius=4, + hidden_size=384, + ): + """ + Initialize the TrackHead module. + + Args: + dim_in (int): Input dimension of tokens from the backbone. + patch_size (int): Size of image patches used in the vision transformer. + features (int): Number of feature channels in the feature extractor output. + iters (int): Number of refinement iterations for tracking predictions. + predict_conf (bool): Whether to predict confidence scores for tracked points. + stride (int): Stride value for the tracker predictor. + corr_levels (int): Number of correlation pyramid levels + corr_radius (int): Radius for correlation computation, controlling the search area. + hidden_size (int): Size of hidden layers in the tracker network. + """ + super().__init__() + + self.patch_size = patch_size + + # Feature extractor based on DPT architecture + # Processes tokens into feature maps for tracking + self.feature_extractor = DPTHead( + dim_in=dim_in, + patch_size=patch_size, + features=features, + feature_only=True, # Only output features, no activation + down_ratio=2, # Reduces spatial dimensions by factor of 2 + pos_embed=False, + ) + + # Tracker module that predicts point trajectories + # Takes feature maps and predicts coordinates and visibility + self.tracker = BaseTrackerPredictor( + latent_dim=features, # Match the output_dim of feature extractor + predict_conf=predict_conf, + stride=stride, + corr_levels=corr_levels, + corr_radius=corr_radius, + hidden_size=hidden_size, + ) + + self.iters = iters + + def forward(self, aggregated_tokens_list, images, patch_start_idx, query_points=None, iters=None): + """ + Forward pass of the TrackHead. + + Args: + aggregated_tokens_list (list): List of aggregated tokens from the backbone. + images (torch.Tensor): Input images of shape (B, S, C, H, W) where: + B = batch size, S = sequence length. + patch_start_idx (int): Starting index for patch tokens. + query_points (torch.Tensor, optional): Initial query points to track. + If None, points are initialized by the tracker. + iters (int, optional): Number of refinement iterations. If None, uses self.iters. + + Returns: + tuple: + - coord_preds (torch.Tensor): Predicted coordinates for tracked points. + - vis_scores (torch.Tensor): Visibility scores for tracked points. + - conf_scores (torch.Tensor): Confidence scores for tracked points (if predict_conf=True). + """ + B, S, _, H, W = images.shape + + # Extract features from tokens + # feature_maps has shape (B, S, C, H//2, W//2) due to down_ratio=2 + feature_maps = self.feature_extractor(aggregated_tokens_list, images, patch_start_idx) + + # Use default iterations if not specified + if iters is None: + iters = self.iters + + # Perform tracking using the extracted features + coord_preds, vis_scores, conf_scores = self.tracker( + query_points=query_points, + fmaps=feature_maps, + iters=iters, + ) + + return coord_preds, vis_scores, conf_scores diff --git a/streamvggt/heads/track_modules/__init__.py b/streamvggt/heads/track_modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/streamvggt/heads/track_modules/__pycache__/__init__.cpython-310.pyc b/streamvggt/heads/track_modules/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e50467b9dcec4c21e07bc8076557afe36ed7b17e Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/__init__.cpython-310.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/__init__.cpython-311.pyc b/streamvggt/heads/track_modules/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..189d341331cca409c4654fbeeddee9d93792dd8f Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/__init__.cpython-311.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/__init__.cpython-312.pyc b/streamvggt/heads/track_modules/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..caca559c1549940f16e8f7ed0d76b53d342da225 Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/__init__.cpython-312.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-310.pyc b/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..145c10a0c6f9251398653ce5252c4503002a3ecd Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-310.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-311.pyc b/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19bcaa967e92dddb5fbb7790ec18120e46d6ba4e Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-311.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-312.pyc b/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c75f63a0ae0015fd23b85d1827b10e4e2efe0ef Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/base_track_predictor.cpython-312.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/blocks.cpython-310.pyc b/streamvggt/heads/track_modules/__pycache__/blocks.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..893afebfd051092803e505919a5f2a91f59c8772 Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/blocks.cpython-310.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/blocks.cpython-311.pyc b/streamvggt/heads/track_modules/__pycache__/blocks.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3ced864db3e74d94091d2eb096720a4f07e76703 Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/blocks.cpython-311.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/blocks.cpython-312.pyc b/streamvggt/heads/track_modules/__pycache__/blocks.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a4c9d74bde3d3975bcb7471aa8488e09e25cb597 Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/blocks.cpython-312.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/modules.cpython-310.pyc b/streamvggt/heads/track_modules/__pycache__/modules.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09dc8714fe8b61fd5eb976f8547977f688ac94bf Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/modules.cpython-310.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/modules.cpython-311.pyc b/streamvggt/heads/track_modules/__pycache__/modules.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..728353ba18ec3a7b9fcca3da6bf486949c38281a Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/modules.cpython-311.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/modules.cpython-312.pyc b/streamvggt/heads/track_modules/__pycache__/modules.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40d90627b72723223da2cad30cd071c21452f5ab Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/modules.cpython-312.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/utils.cpython-310.pyc b/streamvggt/heads/track_modules/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..460b6f4c9dd76dec8a7eb42b52f3c76c95f87742 Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/utils.cpython-310.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/utils.cpython-311.pyc b/streamvggt/heads/track_modules/__pycache__/utils.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db31214c50d9ac55f773b805e3ba0ce77592cda9 Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/utils.cpython-311.pyc differ diff --git a/streamvggt/heads/track_modules/__pycache__/utils.cpython-312.pyc b/streamvggt/heads/track_modules/__pycache__/utils.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cca88764b21643d252d694c5c659620b77a58a8d Binary files /dev/null and b/streamvggt/heads/track_modules/__pycache__/utils.cpython-312.pyc differ diff --git a/streamvggt/heads/track_modules/base_track_predictor.py b/streamvggt/heads/track_modules/base_track_predictor.py new file mode 100644 index 0000000000000000000000000000000000000000..81bc06e873513ac290b06fda523b1862c37d7d17 --- /dev/null +++ b/streamvggt/heads/track_modules/base_track_predictor.py @@ -0,0 +1,195 @@ +import torch +import torch.nn as nn +from einops import rearrange, repeat + + +from .blocks import EfficientUpdateFormer, CorrBlock +from .utils import sample_features4d, get_2d_embedding, get_2d_sincos_pos_embed +from .modules import Mlp + + +class BaseTrackerPredictor(nn.Module): + def __init__( + self, + stride=1, + corr_levels=5, + corr_radius=4, + latent_dim=128, + hidden_size=384, + use_spaceatt=True, + depth=6, + max_scale=518, + predict_conf=True, + ): + super(BaseTrackerPredictor, self).__init__() + self.stride = stride + self.latent_dim = latent_dim + self.corr_levels = corr_levels + self.corr_radius = corr_radius + self.hidden_size = hidden_size + self.max_scale = max_scale + self.predict_conf = predict_conf + + self.flows_emb_dim = latent_dim // 2 + + self.corr_mlp = Mlp( + in_features=self.corr_levels * (self.corr_radius * 2 + 1) ** 2, + hidden_features=self.hidden_size, + out_features=self.latent_dim, + ) + + self.transformer_dim = self.latent_dim + self.latent_dim + self.latent_dim + 4 + + self.query_ref_token = nn.Parameter(torch.randn(1, 2, self.transformer_dim)) + + space_depth = depth if use_spaceatt else 0 + time_depth = depth + + self.updateformer = EfficientUpdateFormer( + space_depth=space_depth, + time_depth=time_depth, + input_dim=self.transformer_dim, + hidden_size=self.hidden_size, + output_dim=self.latent_dim + 2, + mlp_ratio=4.0, + add_space_attn=use_spaceatt, + ) + + self.fmap_norm = nn.LayerNorm(self.latent_dim) + self.ffeat_norm = nn.GroupNorm(1, self.latent_dim) + + # A linear layer to update track feats at each iteration + self.ffeat_updater = nn.Sequential(nn.Linear(self.latent_dim, self.latent_dim), nn.GELU()) + + self.vis_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1)) + + if predict_conf: + self.conf_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1)) + + def forward(self, query_points, fmaps=None, iters=6, return_feat=False, down_ratio=1, apply_sigmoid=True): + """ + query_points: B x N x 2, the number of batches, tracks, and xy + fmaps: B x S x C x HH x WW, the number of batches, frames, and feature dimension. + note HH and WW is the size of feature maps instead of original images + """ + B, N, D = query_points.shape + B, S, C, HH, WW = fmaps.shape + + assert D == 2, "Input points must be 2D coordinates" + + # apply a layernorm to fmaps here + fmaps = self.fmap_norm(fmaps.permute(0, 1, 3, 4, 2)) + fmaps = fmaps.permute(0, 1, 4, 2, 3) + + # Scale the input query_points because we may downsample the images + # by down_ratio or self.stride + # e.g., if a 3x1024x1024 image is processed to a 128x256x256 feature map + # its query_points should be query_points/4 + if down_ratio > 1: + query_points = query_points / float(down_ratio) + + query_points = query_points / float(self.stride) + + # Init with coords as the query points + # It means the search will start from the position of query points at the reference frames + coords = query_points.clone().reshape(B, 1, N, 2).repeat(1, S, 1, 1) + + # Sample/extract the features of the query points in the query frame + query_track_feat = sample_features4d(fmaps[:, 0], coords[:, 0]) + + # init track feats by query feats + track_feats = query_track_feat.unsqueeze(1).repeat(1, S, 1, 1) # B, S, N, C + # back up the init coords + coords_backup = coords.clone() + + fcorr_fn = CorrBlock(fmaps, num_levels=self.corr_levels, radius=self.corr_radius) + + coord_preds = [] + + # Iterative Refinement + for _ in range(iters): + # Detach the gradients from the last iteration + # (in my experience, not very important for performance) + coords = coords.detach() + + fcorrs = fcorr_fn.corr_sample(track_feats, coords) + + corr_dim = fcorrs.shape[3] + fcorrs_ = fcorrs.permute(0, 2, 1, 3).reshape(B * N, S, corr_dim) + fcorrs_ = self.corr_mlp(fcorrs_) + + # Movement of current coords relative to query points + flows = (coords - coords[:, 0:1]).permute(0, 2, 1, 3).reshape(B * N, S, 2) + + flows_emb = get_2d_embedding(flows, self.flows_emb_dim, cat_coords=False) + + # (In my trials, it is also okay to just add the flows_emb instead of concat) + flows_emb = torch.cat([flows_emb, flows / self.max_scale, flows / self.max_scale], dim=-1) + + track_feats_ = track_feats.permute(0, 2, 1, 3).reshape(B * N, S, self.latent_dim) + + # Concatenate them as the input for the transformers + transformer_input = torch.cat([flows_emb, fcorrs_, track_feats_], dim=2) + + # 2D positional embed + pos_embed = get_2d_sincos_pos_embed(self.transformer_dim, grid_size=(HH, WW)).to(query_points.device) + sampled_pos_emb = sample_features4d(pos_embed.expand(B, -1, -1, -1), coords[:, 0]) + + sampled_pos_emb = rearrange(sampled_pos_emb, "b n c -> (b n) c").unsqueeze(1) + + x = transformer_input + sampled_pos_emb + + # Add the query ref token to the track feats + query_ref_token = torch.cat( + [self.query_ref_token[:, 0:1], self.query_ref_token[:, 1:2].expand(-1, S - 1, -1)], dim=1 + ) + x = x + query_ref_token.to(x.device).to(x.dtype) + + # B, N, S, C + x = rearrange(x, "(b n) s d -> b n s d", b=B) + + # Compute the delta coordinates and delta track features + delta, _ = self.updateformer(x) + + # BN, S, C + delta = rearrange(delta, " b n s d -> (b n) s d", b=B) + delta_coords_ = delta[:, :, :2] + delta_feats_ = delta[:, :, 2:] + + track_feats_ = track_feats_.reshape(B * N * S, self.latent_dim) + delta_feats_ = delta_feats_.reshape(B * N * S, self.latent_dim) + + # Update the track features + track_feats_ = self.ffeat_updater(self.ffeat_norm(delta_feats_)) + track_feats_ + + track_feats = track_feats_.reshape(B, N, S, self.latent_dim).permute(0, 2, 1, 3) # BxSxNxC + + # B x S x N x 2 + coords = coords + delta_coords_.reshape(B, N, S, 2).permute(0, 2, 1, 3) + + # Force coord0 as query + # because we assume the query points should not be changed + coords[:, 0] = coords_backup[:, 0] + + # The predicted tracks are in the original image scale + if down_ratio > 1: + coord_preds.append(coords * self.stride * down_ratio) + else: + coord_preds.append(coords * self.stride) + + # B, S, N + vis_e = self.vis_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N) + if apply_sigmoid: + vis_e = torch.sigmoid(vis_e) + + if self.predict_conf: + conf_e = self.conf_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N) + if apply_sigmoid: + conf_e = torch.sigmoid(conf_e) + else: + conf_e = None + + if return_feat: + return coord_preds, vis_e, track_feats, query_track_feat, conf_e + else: + return coord_preds, vis_e, conf_e diff --git a/streamvggt/heads/track_modules/blocks.py b/streamvggt/heads/track_modules/blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..d918dfdc219af05b46911049d3fdfdf02ebac435 --- /dev/null +++ b/streamvggt/heads/track_modules/blocks.py @@ -0,0 +1,237 @@ +import math +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .utils import bilinear_sampler +from .modules import Mlp, AttnBlock, CrossAttnBlock, ResidualBlock + + +class EfficientUpdateFormer(nn.Module): + """ + Transformer model that updates track estimates. + """ + + def __init__( + self, + space_depth=6, + time_depth=6, + input_dim=320, + hidden_size=384, + num_heads=8, + output_dim=130, + mlp_ratio=4.0, + add_space_attn=True, + num_virtual_tracks=64, + ): + super().__init__() + + self.out_channels = 2 + self.num_heads = num_heads + self.hidden_size = hidden_size + self.add_space_attn = add_space_attn + + # Add input LayerNorm before linear projection + self.input_norm = nn.LayerNorm(input_dim) + self.input_transform = torch.nn.Linear(input_dim, hidden_size, bias=True) + + # Add output LayerNorm before final projection + self.output_norm = nn.LayerNorm(hidden_size) + self.flow_head = torch.nn.Linear(hidden_size, output_dim, bias=True) + self.num_virtual_tracks = num_virtual_tracks + + if self.add_space_attn: + self.virual_tracks = nn.Parameter(torch.randn(1, num_virtual_tracks, 1, hidden_size)) + else: + self.virual_tracks = None + + self.time_blocks = nn.ModuleList( + [ + AttnBlock( + hidden_size, + num_heads, + mlp_ratio=mlp_ratio, + attn_class=nn.MultiheadAttention, + ) + for _ in range(time_depth) + ] + ) + + if add_space_attn: + self.space_virtual_blocks = nn.ModuleList( + [ + AttnBlock( + hidden_size, + num_heads, + mlp_ratio=mlp_ratio, + attn_class=nn.MultiheadAttention, + ) + for _ in range(space_depth) + ] + ) + self.space_point2virtual_blocks = nn.ModuleList( + [CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth)] + ) + self.space_virtual2point_blocks = nn.ModuleList( + [CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth)] + ) + assert len(self.time_blocks) >= len(self.space_virtual2point_blocks) + self.initialize_weights() + + def initialize_weights(self): + def _basic_init(module): + if isinstance(module, nn.Linear): + torch.nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.constant_(module.bias, 0) + torch.nn.init.trunc_normal_(self.flow_head.weight, std=0.001) + + self.apply(_basic_init) + + def forward(self, input_tensor, mask=None): + # Apply input LayerNorm + input_tensor = self.input_norm(input_tensor) + tokens = self.input_transform(input_tensor) + + init_tokens = tokens + + B, _, T, _ = tokens.shape + + if self.add_space_attn: + virtual_tokens = self.virual_tracks.repeat(B, 1, T, 1) + tokens = torch.cat([tokens, virtual_tokens], dim=1) + + _, N, _, _ = tokens.shape + + j = 0 + for i in range(len(self.time_blocks)): + time_tokens = tokens.contiguous().view(B * N, T, -1) # B N T C -> (B N) T C + + time_tokens = self.time_blocks[i](time_tokens) + + tokens = time_tokens.view(B, N, T, -1) # (B N) T C -> B N T C + if self.add_space_attn and (i % (len(self.time_blocks) // len(self.space_virtual_blocks)) == 0): + space_tokens = tokens.permute(0, 2, 1, 3).contiguous().view(B * T, N, -1) # B N T C -> (B T) N C + point_tokens = space_tokens[:, : N - self.num_virtual_tracks] + virtual_tokens = space_tokens[:, N - self.num_virtual_tracks :] + + virtual_tokens = self.space_virtual2point_blocks[j](virtual_tokens, point_tokens, mask=mask) + virtual_tokens = self.space_virtual_blocks[j](virtual_tokens) + point_tokens = self.space_point2virtual_blocks[j](point_tokens, virtual_tokens, mask=mask) + + space_tokens = torch.cat([point_tokens, virtual_tokens], dim=1) + tokens = space_tokens.view(B, T, N, -1).permute(0, 2, 1, 3) # (B T) N C -> B N T C + j += 1 + + if self.add_space_attn: + tokens = tokens[:, : N - self.num_virtual_tracks] + + tokens = tokens + init_tokens + + # Apply output LayerNorm before final projection + tokens = self.output_norm(tokens) + flow = self.flow_head(tokens) + + return flow, None + + +class CorrBlock: + def __init__(self, fmaps, num_levels=4, radius=4, multiple_track_feats=False, padding_mode="zeros"): + """ + Build a pyramid of feature maps from the input. + + fmaps: Tensor (B, S, C, H, W) + num_levels: number of pyramid levels (each downsampled by factor 2) + radius: search radius for sampling correlation + multiple_track_feats: if True, split the target features per pyramid level + padding_mode: passed to grid_sample / bilinear_sampler + """ + B, S, C, H, W = fmaps.shape + self.S, self.C, self.H, self.W = S, C, H, W + self.num_levels = num_levels + self.radius = radius + self.padding_mode = padding_mode + self.multiple_track_feats = multiple_track_feats + + # Build pyramid: each level is half the spatial resolution of the previous + self.fmaps_pyramid = [fmaps] # level 0 is full resolution + current_fmaps = fmaps + for i in range(num_levels - 1): + B, S, C, H, W = current_fmaps.shape + # Merge batch & sequence dimensions + current_fmaps = current_fmaps.reshape(B * S, C, H, W) + # Avg pool down by factor 2 + current_fmaps = F.avg_pool2d(current_fmaps, kernel_size=2, stride=2) + _, _, H_new, W_new = current_fmaps.shape + current_fmaps = current_fmaps.reshape(B, S, C, H_new, W_new) + self.fmaps_pyramid.append(current_fmaps) + + # Precompute a delta grid (of shape (2r+1, 2r+1, 2)) for sampling. + # This grid is added to the (scaled) coordinate centroids. + r = self.radius + dx = torch.linspace(-r, r, 2 * r + 1, device=fmaps.device, dtype=fmaps.dtype) + dy = torch.linspace(-r, r, 2 * r + 1, device=fmaps.device, dtype=fmaps.dtype) + # delta: for every (dy,dx) displacement (i.e. Δx, Δy) + self.delta = torch.stack(torch.meshgrid(dy, dx, indexing="ij"), dim=-1) # shape: (2r+1, 2r+1, 2) + + def corr_sample(self, targets, coords): + """ + Instead of storing the entire correlation pyramid, we compute each level's correlation + volume, sample it immediately, then discard it. This saves GPU memory. + + Args: + targets: Tensor (B, S, N, C) — features for the current targets. + coords: Tensor (B, S, N, 2) — coordinates at full resolution. + + Returns: + Tensor (B, S, N, L) where L = num_levels * (2*radius+1)**2 (concatenated sampled correlations) + """ + B, S, N, C = targets.shape + + # If you have multiple track features, split them per level. + if self.multiple_track_feats: + targets_split = torch.split(targets, C // self.num_levels, dim=-1) + + out_pyramid = [] + for i, fmaps in enumerate(self.fmaps_pyramid): + # Get current spatial resolution H, W for this pyramid level. + B, S, C, H, W = fmaps.shape + # Reshape feature maps for correlation computation: + # fmap2s: (B, S, C, H*W) + fmap2s = fmaps.view(B, S, C, H * W) + # Choose appropriate target features. + fmap1 = targets_split[i] if self.multiple_track_feats else targets # shape: (B, S, N, C) + + # Compute correlation directly + corrs = compute_corr_level(fmap1, fmap2s, C) + corrs = corrs.view(B, S, N, H, W) + + # Prepare sampling grid: + # Scale down the coordinates for the current level. + centroid_lvl = coords.reshape(B * S * N, 1, 1, 2) / (2**i) + # Make sure our precomputed delta grid is on the same device/dtype. + delta_lvl = self.delta.to(coords.device).to(coords.dtype) + # Now the grid for grid_sample is: + # coords_lvl = centroid_lvl + delta_lvl (broadcasted over grid) + coords_lvl = centroid_lvl + delta_lvl.view(1, 2 * self.radius + 1, 2 * self.radius + 1, 2) + + # Sample from the correlation volume using bilinear interpolation. + # We reshape corrs to (B * S * N, 1, H, W) so grid_sample acts over each target. + corrs_sampled = bilinear_sampler( + corrs.reshape(B * S * N, 1, H, W), coords_lvl, padding_mode=self.padding_mode + ) + # The sampled output is (B * S * N, 1, 2r+1, 2r+1). Flatten the last two dims. + corrs_sampled = corrs_sampled.view(B, S, N, -1) # Now shape: (B, S, N, (2r+1)^2) + out_pyramid.append(corrs_sampled) + + # Concatenate all levels along the last dimension. + out = torch.cat(out_pyramid, dim=-1).contiguous() + return out + + +def compute_corr_level(fmap1, fmap2s, C): + # fmap1: (B, S, N, C) + # fmap2s: (B, S, C, H*W) + corrs = torch.matmul(fmap1, fmap2s) # (B, S, N, H*W) + corrs = corrs.view(fmap1.shape[0], fmap1.shape[1], fmap1.shape[2], -1) # (B, S, N, H*W) + return corrs / math.sqrt(C) diff --git a/streamvggt/heads/track_modules/modules.py b/streamvggt/heads/track_modules/modules.py new file mode 100644 index 0000000000000000000000000000000000000000..e3d2db65ac004d4d1f8b52d037916759b92ddc9c --- /dev/null +++ b/streamvggt/heads/track_modules/modules.py @@ -0,0 +1,211 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from functools import partial +from typing import Callable +import collections +from torch import Tensor +from itertools import repeat + + +# From PyTorch internals +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): + return tuple(x) + return tuple(repeat(x, n)) + + return parse + + +def exists(val): + return val is not None + + +def default(val, d): + return val if exists(val) else d + + +to_2tuple = _ntuple(2) + + +class ResidualBlock(nn.Module): + """ + ResidualBlock: construct a block of two conv layers with residual connections + """ + + def __init__(self, in_planes, planes, norm_fn="group", stride=1, kernel_size=3): + super(ResidualBlock, self).__init__() + + self.conv1 = nn.Conv2d( + in_planes, + planes, + kernel_size=kernel_size, + padding=1, + stride=stride, + padding_mode="zeros", + ) + self.conv2 = nn.Conv2d( + planes, + planes, + kernel_size=kernel_size, + padding=1, + padding_mode="zeros", + ) + self.relu = nn.ReLU(inplace=True) + + num_groups = planes // 8 + + if norm_fn == "group": + self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + if not stride == 1: + self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) + + elif norm_fn == "batch": + self.norm1 = nn.BatchNorm2d(planes) + self.norm2 = nn.BatchNorm2d(planes) + if not stride == 1: + self.norm3 = nn.BatchNorm2d(planes) + + elif norm_fn == "instance": + self.norm1 = nn.InstanceNorm2d(planes) + self.norm2 = nn.InstanceNorm2d(planes) + if not stride == 1: + self.norm3 = nn.InstanceNorm2d(planes) + + elif norm_fn == "none": + self.norm1 = nn.Sequential() + self.norm2 = nn.Sequential() + if not stride == 1: + self.norm3 = nn.Sequential() + else: + raise NotImplementedError + + if stride == 1: + self.downsample = None + else: + self.downsample = nn.Sequential( + nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), + self.norm3, + ) + + def forward(self, x): + y = x + y = self.relu(self.norm1(self.conv1(y))) + y = self.relu(self.norm2(self.conv2(y))) + + if self.downsample is not None: + x = self.downsample(x) + + return self.relu(x + y) + + +class Mlp(nn.Module): + """MLP as used in Vision Transformer, MLP-Mixer and related networks""" + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=None, + bias=True, + drop=0.0, + use_conv=False, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear + + self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.fc2(x) + x = self.drop2(x) + return x + + +class AttnBlock(nn.Module): + def __init__( + self, + hidden_size, + num_heads, + attn_class: Callable[..., nn.Module] = nn.MultiheadAttention, + mlp_ratio=4.0, + **block_kwargs + ): + """ + Self attention block + """ + super().__init__() + + self.norm1 = nn.LayerNorm(hidden_size) + self.norm2 = nn.LayerNorm(hidden_size) + + self.attn = attn_class(embed_dim=hidden_size, num_heads=num_heads, batch_first=True, **block_kwargs) + + mlp_hidden_dim = int(hidden_size * mlp_ratio) + + self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, drop=0) + + def forward(self, x, mask=None): + # Prepare the mask for PyTorch's attention (it expects a different format) + # attn_mask = mask if mask is not None else None + # Normalize before attention + x = self.norm1(x) + + # PyTorch's MultiheadAttention returns attn_output, attn_output_weights + # attn_output, _ = self.attn(x, x, x, attn_mask=attn_mask) + + attn_output, _ = self.attn(x, x, x) + + # Add & Norm + x = x + attn_output + x = x + self.mlp(self.norm2(x)) + return x + + +class CrossAttnBlock(nn.Module): + def __init__(self, hidden_size, context_dim, num_heads=1, mlp_ratio=4.0, **block_kwargs): + """ + Cross attention block + """ + super().__init__() + + self.norm1 = nn.LayerNorm(hidden_size) + self.norm_context = nn.LayerNorm(hidden_size) + self.norm2 = nn.LayerNorm(hidden_size) + + self.cross_attn = nn.MultiheadAttention( + embed_dim=hidden_size, num_heads=num_heads, batch_first=True, **block_kwargs + ) + + mlp_hidden_dim = int(hidden_size * mlp_ratio) + + self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, drop=0) + + def forward(self, x, context, mask=None): + # Normalize inputs + x = self.norm1(x) + context = self.norm_context(context) + + # Apply cross attention + # Note: nn.MultiheadAttention returns attn_output, attn_output_weights + attn_output, _ = self.cross_attn(x, context, context, attn_mask=mask) + + # Add & Norm + x = x + attn_output + x = x + self.mlp(self.norm2(x)) + return x diff --git a/streamvggt/heads/track_modules/utils.py b/streamvggt/heads/track_modules/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..45a8edc4b885076edf49e1adb4b629889fb8803f --- /dev/null +++ b/streamvggt/heads/track_modules/utils.py @@ -0,0 +1,216 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from typing import Optional, Tuple, Union + + +def get_2d_sincos_pos_embed(embed_dim: int, grid_size: Union[int, Tuple[int, int]], return_grid=False) -> torch.Tensor: + """ + This function initializes a grid and generates a 2D positional embedding using sine and cosine functions. + It is a wrapper of get_2d_sincos_pos_embed_from_grid. + Args: + - embed_dim: The embedding dimension. + - grid_size: The grid size. + Returns: + - pos_embed: The generated 2D positional embedding. + """ + if isinstance(grid_size, tuple): + grid_size_h, grid_size_w = grid_size + else: + grid_size_h = grid_size_w = grid_size + grid_h = torch.arange(grid_size_h, dtype=torch.float) + grid_w = torch.arange(grid_size_w, dtype=torch.float) + grid = torch.meshgrid(grid_w, grid_h, indexing="xy") + grid = torch.stack(grid, dim=0) + grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) + pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) + if return_grid: + return ( + pos_embed.reshape(1, grid_size_h, grid_size_w, -1).permute(0, 3, 1, 2), + grid, + ) + return pos_embed.reshape(1, grid_size_h, grid_size_w, -1).permute(0, 3, 1, 2) + + +def get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid: torch.Tensor) -> torch.Tensor: + """ + This function generates a 2D positional embedding from a given grid using sine and cosine functions. + + Args: + - embed_dim: The embedding dimension. + - grid: The grid to generate the embedding from. + + Returns: + - emb: The generated 2D positional embedding. + """ + assert embed_dim % 2 == 0 + + # use half of dimensions to encode grid_h + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) + + emb = torch.cat([emb_h, emb_w], dim=2) # (H*W, D) + return emb + + +def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor) -> torch.Tensor: + """ + This function generates a 1D positional embedding from a given grid using sine and cosine functions. + + Args: + - embed_dim: The embedding dimension. + - pos: The position to generate the embedding from. + + Returns: + - emb: The generated 1D positional embedding. + """ + assert embed_dim % 2 == 0 + omega = torch.arange(embed_dim // 2, dtype=torch.double) + omega /= embed_dim / 2.0 + omega = 1.0 / 10000**omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product + + emb_sin = torch.sin(out) # (M, D/2) + emb_cos = torch.cos(out) # (M, D/2) + + emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) + return emb[None].float() + + +def get_2d_embedding(xy: torch.Tensor, C: int, cat_coords: bool = True) -> torch.Tensor: + """ + This function generates a 2D positional embedding from given coordinates using sine and cosine functions. + + Args: + - xy: The coordinates to generate the embedding from. + - C: The size of the embedding. + - cat_coords: A flag to indicate whether to concatenate the original coordinates to the embedding. + + Returns: + - pe: The generated 2D positional embedding. + """ + B, N, D = xy.shape + assert D == 2 + + x = xy[:, :, 0:1] + y = xy[:, :, 1:2] + div_term = (torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C)).reshape(1, 1, int(C / 2)) + + pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) + pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) + + pe_x[:, :, 0::2] = torch.sin(x * div_term) + pe_x[:, :, 1::2] = torch.cos(x * div_term) + + pe_y[:, :, 0::2] = torch.sin(y * div_term) + pe_y[:, :, 1::2] = torch.cos(y * div_term) + + pe = torch.cat([pe_x, pe_y], dim=2) # (B, N, C*3) + if cat_coords: + pe = torch.cat([xy, pe], dim=2) # (B, N, C*3+3) + return pe + + +def bilinear_sampler(input, coords, align_corners=True, padding_mode="border"): + r"""Sample a tensor using bilinear interpolation + + `bilinear_sampler(input, coords)` samples a tensor :attr:`input` at + coordinates :attr:`coords` using bilinear interpolation. It is the same + as `torch.nn.functional.grid_sample()` but with a different coordinate + convention. + + The input tensor is assumed to be of shape :math:`(B, C, H, W)`, where + :math:`B` is the batch size, :math:`C` is the number of channels, + :math:`H` is the height of the image, and :math:`W` is the width of the + image. The tensor :attr:`coords` of shape :math:`(B, H_o, W_o, 2)` is + interpreted as an array of 2D point coordinates :math:`(x_i,y_i)`. + + Alternatively, the input tensor can be of size :math:`(B, C, T, H, W)`, + in which case sample points are triplets :math:`(t_i,x_i,y_i)`. Note + that in this case the order of the components is slightly different + from `grid_sample()`, which would expect :math:`(x_i,y_i,t_i)`. + + If `align_corners` is `True`, the coordinate :math:`x` is assumed to be + in the range :math:`[0,W-1]`, with 0 corresponding to the center of the + left-most image pixel :math:`W-1` to the center of the right-most + pixel. + + If `align_corners` is `False`, the coordinate :math:`x` is assumed to + be in the range :math:`[0,W]`, with 0 corresponding to the left edge of + the left-most pixel :math:`W` to the right edge of the right-most + pixel. + + Similar conventions apply to the :math:`y` for the range + :math:`[0,H-1]` and :math:`[0,H]` and to :math:`t` for the range + :math:`[0,T-1]` and :math:`[0,T]`. + + Args: + input (Tensor): batch of input images. + coords (Tensor): batch of coordinates. + align_corners (bool, optional): Coordinate convention. Defaults to `True`. + padding_mode (str, optional): Padding mode. Defaults to `"border"`. + + Returns: + Tensor: sampled points. + """ + coords = coords.detach().clone() + ############################################################ + # IMPORTANT: + coords = coords.to(input.device).to(input.dtype) + ############################################################ + + sizes = input.shape[2:] + + assert len(sizes) in [2, 3] + + if len(sizes) == 3: + # t x y -> x y t to match dimensions T H W in grid_sample + coords = coords[..., [1, 2, 0]] + + if align_corners: + scale = torch.tensor( + [2 / max(size - 1, 1) for size in reversed(sizes)], device=coords.device, dtype=coords.dtype + ) + else: + scale = torch.tensor([2 / size for size in reversed(sizes)], device=coords.device, dtype=coords.dtype) + + coords.mul_(scale) # coords = coords * scale + coords.sub_(1) # coords = coords - 1 + + return F.grid_sample(input, coords, align_corners=align_corners, padding_mode=padding_mode) + + +def sample_features4d(input, coords): + r"""Sample spatial features + + `sample_features4d(input, coords)` samples the spatial features + :attr:`input` represented by a 4D tensor :math:`(B, C, H, W)`. + + The field is sampled at coordinates :attr:`coords` using bilinear + interpolation. :attr:`coords` is assumed to be of shape :math:`(B, R, + 2)`, where each sample has the format :math:`(x_i, y_i)`. This uses the + same convention as :func:`bilinear_sampler` with `align_corners=True`. + + The output tensor has one feature per point, and has shape :math:`(B, + R, C)`. + + Args: + input (Tensor): spatial features. + coords (Tensor): points. + + Returns: + Tensor: sampled features. + """ + + B, _, _, _ = input.shape + + # B R 2 -> B R 1 2 + coords = coords.unsqueeze(2) + + # B C R 1 + feats = bilinear_sampler(input, coords) + + return feats.permute(0, 2, 1, 3).view(B, -1, feats.shape[1] * feats.shape[3]) # B C R 1 -> B R C diff --git a/streamvggt/heads/utils.py b/streamvggt/heads/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..4c526f2daace4cc6a52daa3ba212df55123ebf79 --- /dev/null +++ b/streamvggt/heads/utils.py @@ -0,0 +1,99 @@ +import torch +import torch.nn as nn + + +def position_grid_to_embed(pos_grid: torch.Tensor, embed_dim: int, omega_0: float = 100) -> torch.Tensor: + """ + Convert 2D position grid (HxWx2) to sinusoidal embeddings (HxWxC) + + Args: + pos_grid: Tensor of shape (H, W, 2) containing 2D coordinates + embed_dim: Output channel dimension for embeddings + + Returns: + Tensor of shape (H, W, embed_dim) with positional embeddings + """ + H, W, grid_dim = pos_grid.shape + assert grid_dim == 2 + pos_flat = pos_grid.reshape(-1, grid_dim) # Flatten to (H*W, 2) + + # Process x and y coordinates separately + emb_x = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 0], omega_0=omega_0) # [1, H*W, D/2] + emb_y = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 1], omega_0=omega_0) # [1, H*W, D/2] + + # Combine and reshape + emb = torch.cat([emb_x, emb_y], dim=-1) # [1, H*W, D] + + return emb.view(H, W, embed_dim) # [H, W, D] + + +def make_sincos_pos_embed(embed_dim: int, pos: torch.Tensor, omega_0: float = 100) -> torch.Tensor: + """ + This function generates a 1D positional embedding from a given grid using sine and cosine functions. + + Args: + - embed_dim: The embedding dimension. + - pos: The position to generate the embedding from. + + Returns: + - emb: The generated 1D positional embedding. + """ + assert embed_dim % 2 == 0 + omega = torch.arange(embed_dim // 2, dtype=torch.double, device=pos.device) + omega /= embed_dim / 2.0 + omega = 1.0 / omega_0**omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product + + emb_sin = torch.sin(out) # (M, D/2) + emb_cos = torch.cos(out) # (M, D/2) + + emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) + return emb.float() + + +def create_uv_grid( + width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None +) -> torch.Tensor: + """ + Create a normalized UV grid of shape (width, height, 2). + + The grid spans horizontally and vertically according to an aspect ratio, + ensuring the top-left corner is at (-x_span, -y_span) and the bottom-right + corner is at (x_span, y_span), normalized by the diagonal of the plane. + + Args: + width (int): Number of points horizontally. + height (int): Number of points vertically. + aspect_ratio (float, optional): Width-to-height ratio. Defaults to width/height. + dtype (torch.dtype, optional): Data type of the resulting tensor. + device (torch.device, optional): Device on which the tensor is created. + + Returns: + torch.Tensor: A (width, height, 2) tensor of UV coordinates. + """ + # Derive aspect ratio if not explicitly provided + if aspect_ratio is None: + aspect_ratio = float(width) / float(height) + + # Compute normalized spans for X and Y + diag_factor = (aspect_ratio**2 + 1.0) ** 0.5 + span_x = aspect_ratio / diag_factor + span_y = 1.0 / diag_factor + + # Establish the linspace boundaries + left_x = -span_x * (width - 1) / width + right_x = span_x * (width - 1) / width + top_y = -span_y * (height - 1) / height + bottom_y = span_y * (height - 1) / height + + # Generate 1D coordinates + x_coords = torch.linspace(left_x, right_x, steps=width, dtype=dtype, device=device) + y_coords = torch.linspace(top_y, bottom_y, steps=height, dtype=dtype, device=device) + + # Create 2D meshgrid (width x height) and stack into UV + uu, vv = torch.meshgrid(x_coords, y_coords, indexing="xy") + uv_grid = torch.stack((uu, vv), dim=-1) + + return uv_grid diff --git a/streamvggt/layers/__init__.py b/streamvggt/layers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7b3f0048703b51bcb8bf63d327b66bef0d51f8da --- /dev/null +++ b/streamvggt/layers/__init__.py @@ -0,0 +1,5 @@ +from .mlp import Mlp +from .patch_embed import PatchEmbed +from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused +from .block import NestedTensorBlock +from .attention import MemEffAttention diff --git a/streamvggt/layers/attention.py b/streamvggt/layers/attention.py new file mode 100644 index 0000000000000000000000000000000000000000..b25b9c0d52481d63076f1bc5b776c8690c3445d8 --- /dev/null +++ b/streamvggt/layers/attention.py @@ -0,0 +1,129 @@ +import logging +import os +import warnings + +import torch +from torch import Tensor +from torch import nn +import torch.nn.functional as F +from typing import Union, Tuple, Dict, Optional + +from einops import rearrange + +XFORMERS_AVAILABLE = False + + +class Attention(nn.Module): + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + proj_bias: bool = True, + attn_drop: float = 0.0, + proj_drop: float = 0.0, + norm_layer: nn.Module = nn.LayerNorm, + qk_norm: bool = False, + fused_attn: bool = True, # use F.scaled_dot_product_attention or not + rope=None, + ) -> None: + super().__init__() + assert dim % num_heads == 0, "dim should be divisible by num_heads" + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim**-0.5 + self.fused_attn = fused_attn + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim, bias=proj_bias) + self.proj_drop = nn.Dropout(proj_drop) + self.rope = rope + + def forward(self, + x: torch.Tensor, + pos=None, + attn_mask=None, + past_key_values=None, + use_cache=False + ) -> Union[torch.Tensor, Tuple[torch.Tensor, Tuple]]: + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + pos_k = pos + if use_cache: + k = k.unsqueeze(2) + v = v.unsqueeze(2) + if past_key_values is not None: + past_k, past_v = past_key_values + k = torch.cat([past_k, k], dim=2) + v = torch.cat([past_v, v], dim=2) + + new_kv = (k, v) + a, b, c, d, e = k.shape + k = k.reshape(a, b, c*d, e) + v = v.reshape(a, b, c*d, e) + if pos_k is not None: + #print(pos_k.shape) + pos_k = pos_k.repeat(1, c, 1) + #print(pos_k.shape) + + q, k = self.q_norm(q), self.k_norm(k) + + if self.rope is not None: + q = self.rope(q, pos) + k = self.rope(k, pos_k) + + if self.fused_attn: + x = F.scaled_dot_product_attention( + q, + k, + v, + attn_mask=attn_mask, + dropout_p=self.attn_drop.p if self.training else 0.0, + ) + + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + + # Mask + if attn_mask is not None: + assert attn_mask.shape[-2:] == (N, N), f"Expected mask shape [..., {N}, {N}], got {attn_mask.shape}" + attn = attn + attn_mask + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + if use_cache: + return x, new_kv + return x + + +class MemEffAttention(Attention): + def forward(self, x: Tensor, attn_bias=None, pos=None) -> Tensor: + assert pos is None + if not XFORMERS_AVAILABLE: + if attn_bias is not None: + raise AssertionError("xFormers is required for using nested tensors") + return super().forward(x) + + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) + + q, k, v = unbind(qkv, 2) + + x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) + x = x.reshape([B, N, C]) + + x = self.proj(x) + x = self.proj_drop(x) + + return x diff --git a/streamvggt/layers/block.py b/streamvggt/layers/block.py new file mode 100644 index 0000000000000000000000000000000000000000..2450405388160bdf423fef7500dcd746c2e0069c --- /dev/null +++ b/streamvggt/layers/block.py @@ -0,0 +1,263 @@ +import logging +import os +from typing import Callable, List, Any, Tuple, Dict, Union +import warnings + +import torch +from torch import nn, Tensor + +from .attention import Attention +from .drop_path import DropPath +from .layer_scale import LayerScale +from .mlp import Mlp + + +XFORMERS_AVAILABLE = False + + +class Block(nn.Module): + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + proj_bias: bool = True, + ffn_bias: bool = True, + drop: float = 0.0, + attn_drop: float = 0.0, + init_values=None, + drop_path: float = 0.0, + act_layer: Callable[..., nn.Module] = nn.GELU, + norm_layer: Callable[..., nn.Module] = nn.LayerNorm, + attn_class: Callable[..., nn.Module] = Attention, + ffn_layer: Callable[..., nn.Module] = Mlp, + qk_norm: bool = False, + fused_attn: bool = True, # use F.scaled_dot_product_attention or not + rope=None, + ) -> None: + super().__init__() + + self.norm1 = norm_layer(dim) + + self.attn = attn_class( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + proj_bias=proj_bias, + attn_drop=attn_drop, + proj_drop=drop, + qk_norm=qk_norm, + fused_attn=fused_attn, + rope=rope, + ) + + self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = ffn_layer( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop, + bias=ffn_bias, + ) + self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.sample_drop_ratio = drop_path + + def forward(self, x: Tensor, pos=None, attn_mask=None, past_key_values=None, use_cache=False) -> Union[Tensor, Tuple[Tensor, Dict]]: + + def attn_residual_func(x: Tensor, pos=None, attn_mask=None, past_key_values=None, use_cache=False) -> Union[Tensor, Tuple[Tensor, Dict]]: + if use_cache: + output, new_kv = self.attn(self.norm1(x), pos=pos, past_key_values=past_key_values, use_cache=True) + return self.ls1(output), new_kv + else: + if attn_mask is not None: + return self.ls1(self.attn(self.norm1(x), pos=pos, attn_mask=attn_mask)) + else: + return self.ls1(self.attn(self.norm1(x), pos=pos)) + def ffn_residual_func(x: Tensor) -> Tensor: + return self.ls2(self.mlp(self.norm2(x))) + + if use_cache: + attn_output, new_kv = attn_residual_func(x, pos=pos, past_key_values=past_key_values, use_cache=True) + x = x + attn_output + x = x + ffn_residual_func(x) + return x, new_kv + + if self.training and self.sample_drop_ratio > 0.1: + # the overhead is compensated only for a drop path rate larger than 0.1 + x = drop_add_residual_stochastic_depth( + x, + pos=pos, + residual_func=attn_residual_func, + sample_drop_ratio=self.sample_drop_ratio, + ) + x = drop_add_residual_stochastic_depth( + x, + residual_func=ffn_residual_func, + sample_drop_ratio=self.sample_drop_ratio, + ) + elif self.training and self.sample_drop_ratio > 0.0: + x = x + self.drop_path1(attn_residual_func(x, pos=pos, attn_mask=attn_mask)) + x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 + else: + x = x + attn_residual_func(x, pos=pos, attn_mask=attn_mask) + x = x + ffn_residual_func(x) + return x + + +def drop_add_residual_stochastic_depth( + x: Tensor, + residual_func: Callable[[Tensor], Tensor], + sample_drop_ratio: float = 0.0, + pos=None, +) -> Tensor: + # 1) extract subset using permutation + b, n, d = x.shape + sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) + brange = (torch.randperm(b, device=x.device))[:sample_subset_size] + x_subset = x[brange] + + # 2) apply residual_func to get residual + if pos is not None: + # if necessary, apply rope to the subset + pos = pos[brange] + residual = residual_func(x_subset, pos=pos) + else: + residual = residual_func(x_subset) + + x_flat = x.flatten(1) + residual = residual.flatten(1) + + residual_scale_factor = b / sample_subset_size + + # 3) add the residual + x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) + return x_plus_residual.view_as(x) + + +def get_branges_scales(x, sample_drop_ratio=0.0): + b, n, d = x.shape + sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) + brange = (torch.randperm(b, device=x.device))[:sample_subset_size] + residual_scale_factor = b / sample_subset_size + return brange, residual_scale_factor + + +def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None): + if scaling_vector is None: + x_flat = x.flatten(1) + residual = residual.flatten(1) + x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) + else: + x_plus_residual = scaled_index_add( + x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor + ) + return x_plus_residual + + +attn_bias_cache: Dict[Tuple, Any] = {} + + +def get_attn_bias_and_cat(x_list, branges=None): + """ + this will perform the index select, cat the tensors, and provide the attn_bias from cache + """ + batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list] + all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list)) + if all_shapes not in attn_bias_cache.keys(): + seqlens = [] + for b, x in zip(batch_sizes, x_list): + for _ in range(b): + seqlens.append(x.shape[1]) + attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens) + attn_bias._batch_sizes = batch_sizes + attn_bias_cache[all_shapes] = attn_bias + + if branges is not None: + cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1]) + else: + tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list) + cat_tensors = torch.cat(tensors_bs1, dim=1) + + return attn_bias_cache[all_shapes], cat_tensors + + +def drop_add_residual_stochastic_depth_list( + x_list: List[Tensor], + residual_func: Callable[[Tensor, Any], Tensor], + sample_drop_ratio: float = 0.0, + scaling_vector=None, +) -> Tensor: + # 1) generate random set of indices for dropping samples in the batch + branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list] + branges = [s[0] for s in branges_scales] + residual_scale_factors = [s[1] for s in branges_scales] + + # 2) get attention bias and index+concat the tensors + attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges) + + # 3) apply residual_func to get residual, and split the result + residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore + + outputs = [] + for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors): + outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x)) + return outputs + + +class NestedTensorBlock(Block): + def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]: + """ + x_list contains a list of tensors to nest together and run + """ + assert isinstance(self.attn, MemEffAttention) + + if self.training and self.sample_drop_ratio > 0.0: + + def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: + return self.attn(self.norm1(x), attn_bias=attn_bias) + + def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: + return self.mlp(self.norm2(x)) + + x_list = drop_add_residual_stochastic_depth_list( + x_list, + residual_func=attn_residual_func, + sample_drop_ratio=self.sample_drop_ratio, + scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None, + ) + x_list = drop_add_residual_stochastic_depth_list( + x_list, + residual_func=ffn_residual_func, + sample_drop_ratio=self.sample_drop_ratio, + scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None, + ) + return x_list + else: + + def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: + return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias)) + + def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: + return self.ls2(self.mlp(self.norm2(x))) + + attn_bias, x = get_attn_bias_and_cat(x_list) + x = x + attn_residual_func(x, attn_bias=attn_bias) + x = x + ffn_residual_func(x) + return attn_bias.split(x) + + def forward(self, x_or_x_list): + if isinstance(x_or_x_list, Tensor): + return super().forward(x_or_x_list) + elif isinstance(x_or_x_list, list): + if not XFORMERS_AVAILABLE: + raise AssertionError("xFormers is required for using nested tensors") + return self.forward_nested(x_or_x_list) + else: + raise AssertionError diff --git a/streamvggt/layers/drop_path.py b/streamvggt/layers/drop_path.py new file mode 100644 index 0000000000000000000000000000000000000000..b5021815ed084014cd7eab52139a0d1113138123 --- /dev/null +++ b/streamvggt/layers/drop_path.py @@ -0,0 +1,24 @@ +from torch import nn + + +def drop_path(x, drop_prob: float = 0.0, training: bool = False): + if drop_prob == 0.0 or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0: + random_tensor.div_(keep_prob) + output = x * random_tensor + return output + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) diff --git a/streamvggt/layers/layer_scale.py b/streamvggt/layers/layer_scale.py new file mode 100644 index 0000000000000000000000000000000000000000..9e83807bdec80588636761c42e4a245fda6a67ea --- /dev/null +++ b/streamvggt/layers/layer_scale.py @@ -0,0 +1,20 @@ +from typing import Union + +import torch +from torch import Tensor +from torch import nn + + +class LayerScale(nn.Module): + def __init__( + self, + dim: int, + init_values: Union[float, Tensor] = 1e-5, + inplace: bool = False, + ) -> None: + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x: Tensor) -> Tensor: + return x.mul_(self.gamma) if self.inplace else x * self.gamma diff --git a/streamvggt/layers/mlp.py b/streamvggt/layers/mlp.py new file mode 100644 index 0000000000000000000000000000000000000000..8d12860274f57e1aeb080d615421225474ee9bf7 --- /dev/null +++ b/streamvggt/layers/mlp.py @@ -0,0 +1,30 @@ +from typing import Callable, Optional + +from torch import Tensor, nn + + +class Mlp(nn.Module): + def __init__( + self, + in_features: int, + hidden_features: Optional[int] = None, + out_features: Optional[int] = None, + act_layer: Callable[..., nn.Module] = nn.GELU, + drop: float = 0.0, + bias: bool = True, + ) -> None: + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) + self.drop = nn.Dropout(drop) + + def forward(self, x: Tensor) -> Tensor: + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x diff --git a/streamvggt/layers/patch_embed.py b/streamvggt/layers/patch_embed.py new file mode 100644 index 0000000000000000000000000000000000000000..cfea54a42bb5ed0714d97c7701ceff2410f55fac --- /dev/null +++ b/streamvggt/layers/patch_embed.py @@ -0,0 +1,79 @@ +from typing import Callable, Optional, Tuple, Union + +from torch import Tensor +import torch.nn as nn + + +def make_2tuple(x): + if isinstance(x, tuple): + assert len(x) == 2 + return x + + assert isinstance(x, int) + return (x, x) + + +class PatchEmbed(nn.Module): + """ + 2D image to patch embedding: (B,C,H,W) -> (B,N,D) + + Args: + img_size: Image size. + patch_size: Patch token size. + in_chans: Number of input image channels. + embed_dim: Number of linear projection output channels. + norm_layer: Normalization layer. + """ + + def __init__( + self, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 16, + in_chans: int = 3, + embed_dim: int = 768, + norm_layer: Optional[Callable] = None, + flatten_embedding: bool = True, + ) -> None: + super().__init__() + + image_HW = make_2tuple(img_size) + patch_HW = make_2tuple(patch_size) + patch_grid_size = ( + image_HW[0] // patch_HW[0], + image_HW[1] // patch_HW[1], + ) + + self.img_size = image_HW + self.patch_size = patch_HW + self.patches_resolution = patch_grid_size + self.num_patches = patch_grid_size[0] * patch_grid_size[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.flatten_embedding = flatten_embedding + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + def forward(self, x: Tensor) -> Tensor: + _, _, H, W = x.shape + patch_H, patch_W = self.patch_size + + assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}" + assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}" + + x = self.proj(x) # B C H W + H, W = x.size(2), x.size(3) + x = x.flatten(2).transpose(1, 2) # B HW C + x = self.norm(x) + if not self.flatten_embedding: + x = x.reshape(-1, H, W, self.embed_dim) # B H W C + return x + + def flops(self) -> float: + Ho, Wo = self.patches_resolution + flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) + if self.norm is not None: + flops += Ho * Wo * self.embed_dim + return flops diff --git a/streamvggt/layers/rope.py b/streamvggt/layers/rope.py new file mode 100644 index 0000000000000000000000000000000000000000..a94afbdde5c1b9ab0f36ba8257437aac10f87969 --- /dev/null +++ b/streamvggt/layers/rope.py @@ -0,0 +1,172 @@ +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from typing import Dict, Tuple + + +class PositionGetter: + """Generates and caches 2D spatial positions for patches in a grid. + + This class efficiently manages the generation of spatial coordinates for patches + in a 2D grid, caching results to avoid redundant computations. + + Attributes: + position_cache: Dictionary storing precomputed position tensors for different + grid dimensions. + """ + + def __init__(self): + """Initializes the position generator with an empty cache.""" + self.position_cache: Dict[Tuple[int, int], torch.Tensor] = {} + + def __call__(self, batch_size: int, height: int, width: int, device: torch.device) -> torch.Tensor: + """Generates spatial positions for a batch of patches. + + Args: + batch_size: Number of samples in the batch. + height: Height of the grid in patches. + width: Width of the grid in patches. + device: Target device for the position tensor. + + Returns: + Tensor of shape (batch_size, height*width, 2) containing y,x coordinates + for each position in the grid, repeated for each batch item. + """ + if (height, width) not in self.position_cache: + y_coords = torch.arange(height, device=device) + x_coords = torch.arange(width, device=device) + positions = torch.cartesian_prod(y_coords, x_coords) + self.position_cache[height, width] = positions + + cached_positions = self.position_cache[height, width] + return cached_positions.view(1, height * width, 2).expand(batch_size, -1, -1).clone() + + +class RotaryPositionEmbedding2D(nn.Module): + """2D Rotary Position Embedding implementation. + + This module applies rotary position embeddings to input tokens based on their + 2D spatial positions. It handles the position-dependent rotation of features + separately for vertical and horizontal dimensions. + + Args: + frequency: Base frequency for the position embeddings. Default: 100.0 + scaling_factor: Scaling factor for frequency computation. Default: 1.0 + + Attributes: + base_frequency: Base frequency for computing position embeddings. + scaling_factor: Factor to scale the computed frequencies. + frequency_cache: Cache for storing precomputed frequency components. + """ + + def __init__(self, frequency: float = 100.0, scaling_factor: float = 1.0): + """Initializes the 2D RoPE module.""" + super().__init__() + self.base_frequency = frequency + self.scaling_factor = scaling_factor + self.frequency_cache: Dict[Tuple, Tuple[torch.Tensor, torch.Tensor]] = {} + + def _compute_frequency_components( + self, dim: int, seq_len: int, device: torch.device, dtype: torch.dtype + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Computes frequency components for rotary embeddings. + + Args: + dim: Feature dimension (must be even). + seq_len: Maximum sequence length. + device: Target device for computations. + dtype: Data type for the computed tensors. + + Returns: + Tuple of (cosine, sine) tensors for frequency components. + """ + cache_key = (dim, seq_len, device, dtype) + if cache_key not in self.frequency_cache: + # Compute frequency bands + exponents = torch.arange(0, dim, 2, device=device).float() / dim + inv_freq = 1.0 / (self.base_frequency**exponents) + + # Generate position-dependent frequencies + positions = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) + angles = torch.einsum("i,j->ij", positions, inv_freq) + + # Compute and cache frequency components + angles = angles.to(dtype) + angles = torch.cat((angles, angles), dim=-1) + cos_components = angles.cos().to(dtype) + sin_components = angles.sin().to(dtype) + self.frequency_cache[cache_key] = (cos_components, sin_components) + + return self.frequency_cache[cache_key] + + @staticmethod + def _rotate_features(x: torch.Tensor) -> torch.Tensor: + """Performs feature rotation by splitting and recombining feature dimensions. + + Args: + x: Input tensor to rotate. + + Returns: + Rotated feature tensor. + """ + feature_dim = x.shape[-1] + x1, x2 = x[..., : feature_dim // 2], x[..., feature_dim // 2 :] + return torch.cat((-x2, x1), dim=-1) + + def _apply_1d_rope( + self, tokens: torch.Tensor, positions: torch.Tensor, cos_comp: torch.Tensor, sin_comp: torch.Tensor + ) -> torch.Tensor: + """Applies 1D rotary position embeddings along one dimension. + + Args: + tokens: Input token features. + positions: Position indices. + cos_comp: Cosine components for rotation. + sin_comp: Sine components for rotation. + + Returns: + Tokens with applied rotary position embeddings. + """ + # Embed positions with frequency components + cos = F.embedding(positions, cos_comp)[:, None, :, :] + sin = F.embedding(positions, sin_comp)[:, None, :, :] + + # Apply rotation + return (tokens * cos) + (self._rotate_features(tokens) * sin) + + def forward(self, tokens: torch.Tensor, positions: torch.Tensor) -> torch.Tensor: + """Applies 2D rotary position embeddings to input tokens. + + Args: + tokens: Input tensor of shape (batch_size, n_heads, n_tokens, dim). + The feature dimension (dim) must be divisible by 4. + positions: Position tensor of shape (batch_size, n_tokens, 2) containing + the y and x coordinates for each token. + + Returns: + Tensor of same shape as input with applied 2D rotary position embeddings. + + Raises: + AssertionError: If input dimensions are invalid or positions are malformed. + """ + # Validate inputs + assert tokens.size(-1) % 2 == 0, "Feature dimension must be even" + assert positions.ndim == 3 and positions.shape[-1] == 2, "Positions must have shape (batch_size, n_tokens, 2)" + + # Compute feature dimension for each spatial direction + feature_dim = tokens.size(-1) // 2 + + # Get frequency components + max_position = int(positions.max()) + 1 + cos_comp, sin_comp = self._compute_frequency_components(feature_dim, max_position, tokens.device, tokens.dtype) + + # Split features for vertical and horizontal processing + vertical_features, horizontal_features = tokens.chunk(2, dim=-1) + + # Apply RoPE separately for each dimension + vertical_features = self._apply_1d_rope(vertical_features, positions[..., 0], cos_comp, sin_comp) + horizontal_features = self._apply_1d_rope(horizontal_features, positions[..., 1], cos_comp, sin_comp) + + # Combine processed features + return torch.cat((vertical_features, horizontal_features), dim=-1) diff --git a/streamvggt/layers/swiglu_ffn.py b/streamvggt/layers/swiglu_ffn.py new file mode 100644 index 0000000000000000000000000000000000000000..65adc6cb3bc5b95502971bc939e195cbd5ae7313 --- /dev/null +++ b/streamvggt/layers/swiglu_ffn.py @@ -0,0 +1,67 @@ +import os +from typing import Callable, Optional +import warnings + +from torch import Tensor, nn +import torch.nn.functional as F + + +class SwiGLUFFN(nn.Module): + def __init__( + self, + in_features: int, + hidden_features: Optional[int] = None, + out_features: Optional[int] = None, + act_layer: Callable[..., nn.Module] = None, + drop: float = 0.0, + bias: bool = True, + ) -> None: + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) + self.w3 = nn.Linear(hidden_features, out_features, bias=bias) + + def forward(self, x: Tensor) -> Tensor: + x12 = self.w12(x) + x1, x2 = x12.chunk(2, dim=-1) + hidden = F.silu(x1) * x2 + return self.w3(hidden) + + +XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None +# try: +# if XFORMERS_ENABLED: +# from xformers.ops import SwiGLU + +# XFORMERS_AVAILABLE = True +# warnings.warn("xFormers is available (SwiGLU)") +# else: +# warnings.warn("xFormers is disabled (SwiGLU)") +# raise ImportError +# except ImportError: +SwiGLU = SwiGLUFFN +XFORMERS_AVAILABLE = False + +# warnings.warn("xFormers is not available (SwiGLU)") + + +class SwiGLUFFNFused(SwiGLU): + def __init__( + self, + in_features: int, + hidden_features: Optional[int] = None, + out_features: Optional[int] = None, + act_layer: Callable[..., nn.Module] = None, + drop: float = 0.0, + bias: bool = True, + ) -> None: + out_features = out_features or in_features + hidden_features = hidden_features or in_features + hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 + super().__init__( + in_features=in_features, + hidden_features=hidden_features, + out_features=out_features, + bias=bias, + ) diff --git a/streamvggt/layers/vision_transformer.py b/streamvggt/layers/vision_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..408185956315205817e49aeb824de3d933bb2595 --- /dev/null +++ b/streamvggt/layers/vision_transformer.py @@ -0,0 +1,398 @@ +from functools import partial +import math +import logging +from typing import Sequence, Tuple, Union, Callable + +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint +from torch.nn.init import trunc_normal_ +from . import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block + +logger = logging.getLogger("dinov2") + + +def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module: + if not depth_first and include_root: + fn(module=module, name=name) + for child_name, child_module in module.named_children(): + child_name = ".".join((name, child_name)) if name else child_name + named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) + if depth_first and include_root: + fn(module=module, name=name) + return module + + +class BlockChunk(nn.ModuleList): + def forward(self, x): + for b in self: + x = b(x) + return x + + +class DinoVisionTransformer(nn.Module): + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4.0, + qkv_bias=True, + ffn_bias=True, + proj_bias=True, + drop_path_rate=0.0, + drop_path_uniform=False, + init_values=None, # for layerscale: None or 0 => no layerscale + embed_layer=PatchEmbed, + act_layer=nn.GELU, + block_fn=Block, + ffn_layer="mlp", + block_chunks=1, + num_register_tokens=0, + interpolate_antialias=False, + interpolate_offset=0.1, + qk_norm=False, + ): + """ + Args: + img_size (int, tuple): input image size + patch_size (int, tuple): patch size + in_chans (int): number of input channels + embed_dim (int): embedding dimension + depth (int): depth of transformer + num_heads (int): number of attention heads + mlp_ratio (int): ratio of mlp hidden dim to embedding dim + qkv_bias (bool): enable bias for qkv if True + proj_bias (bool): enable bias for proj in attn if True + ffn_bias (bool): enable bias for ffn if True + drop_path_rate (float): stochastic depth rate + drop_path_uniform (bool): apply uniform drop rate across blocks + weight_init (str): weight init scheme + init_values (float): layer-scale init values + embed_layer (nn.Module): patch embedding layer + act_layer (nn.Module): MLP activation layer + block_fn (nn.Module): transformer block class + ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" + block_chunks: (int) split block sequence into block_chunks units for FSDP wrap + num_register_tokens: (int) number of extra cls tokens (so-called "registers") + interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings + interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings + """ + super().__init__() + norm_layer = partial(nn.LayerNorm, eps=1e-6) + + # tricky but makes it work + self.use_checkpoint = False + # + + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + self.num_tokens = 1 + self.n_blocks = depth + self.num_heads = num_heads + self.patch_size = patch_size + self.num_register_tokens = num_register_tokens + self.interpolate_antialias = interpolate_antialias + self.interpolate_offset = interpolate_offset + + self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) + assert num_register_tokens >= 0 + self.register_tokens = ( + nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None + ) + + if drop_path_uniform is True: + dpr = [drop_path_rate] * depth + else: + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + + if ffn_layer == "mlp": + logger.info("using MLP layer as FFN") + ffn_layer = Mlp + elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": + logger.info("using SwiGLU layer as FFN") + ffn_layer = SwiGLUFFNFused + elif ffn_layer == "identity": + logger.info("using Identity layer as FFN") + + def f(*args, **kwargs): + return nn.Identity() + + ffn_layer = f + else: + raise NotImplementedError + + blocks_list = [ + block_fn( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_bias=proj_bias, + ffn_bias=ffn_bias, + drop_path=dpr[i], + norm_layer=norm_layer, + act_layer=act_layer, + ffn_layer=ffn_layer, + init_values=init_values, + qk_norm=qk_norm, + ) + for i in range(depth) + ] + if block_chunks > 0: + self.chunked_blocks = True + chunked_blocks = [] + chunksize = depth // block_chunks + for i in range(0, depth, chunksize): + # this is to keep the block index consistent if we chunk the block list + chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) + self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) + else: + self.chunked_blocks = False + self.blocks = nn.ModuleList(blocks_list) + + self.norm = norm_layer(embed_dim) + self.head = nn.Identity() + + self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) + + self.init_weights() + + def init_weights(self): + trunc_normal_(self.pos_embed, std=0.02) + nn.init.normal_(self.cls_token, std=1e-6) + if self.register_tokens is not None: + nn.init.normal_(self.register_tokens, std=1e-6) + named_apply(init_weights_vit_timm, self) + + def interpolate_pos_encoding(self, x, w, h): + previous_dtype = x.dtype + npatch = x.shape[1] - 1 + N = self.pos_embed.shape[1] - 1 + if npatch == N and w == h: + return self.pos_embed + pos_embed = self.pos_embed.float() + class_pos_embed = pos_embed[:, 0] + patch_pos_embed = pos_embed[:, 1:] + dim = x.shape[-1] + w0 = w // self.patch_size + h0 = h // self.patch_size + M = int(math.sqrt(N)) # Recover the number of patches in each dimension + assert N == M * M + kwargs = {} + if self.interpolate_offset: + # Historical kludge: add a small number to avoid floating point error in the interpolation, see https://github.com/facebookresearch/dino/issues/8 + # Note: still needed for backward-compatibility, the underlying operators are using both output size and scale factors + sx = float(w0 + self.interpolate_offset) / M + sy = float(h0 + self.interpolate_offset) / M + kwargs["scale_factor"] = (sx, sy) + else: + # Simply specify an output size instead of a scale factor + kwargs["size"] = (w0, h0) + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2), + mode="bicubic", + antialias=self.interpolate_antialias, + **kwargs, + ) + assert (w0, h0) == patch_pos_embed.shape[-2:] + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype) + + def prepare_tokens_with_masks(self, x, masks=None): + B, nc, w, h = x.shape + x = self.patch_embed(x) + if masks is not None: + x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) + + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + x = x + self.interpolate_pos_encoding(x, w, h) + + if self.register_tokens is not None: + x = torch.cat( + ( + x[:, :1], + self.register_tokens.expand(x.shape[0], -1, -1), + x[:, 1:], + ), + dim=1, + ) + + return x + + def forward_features_list(self, x_list, masks_list): + x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] + + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint(blk, x, use_reentrant=self.use_reentrant) + else: + x = blk(x) + + all_x = x + output = [] + for x, masks in zip(all_x, masks_list): + x_norm = self.norm(x) + output.append( + { + "x_norm_clstoken": x_norm[:, 0], + "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], + "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], + "x_prenorm": x, + "masks": masks, + } + ) + return output + + def forward_features(self, x, masks=None): + if isinstance(x, list): + return self.forward_features_list(x, masks) + + x = self.prepare_tokens_with_masks(x, masks) + + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint(blk, x, use_reentrant=self.use_reentrant) + else: + x = blk(x) + + x_norm = self.norm(x) + return { + "x_norm_clstoken": x_norm[:, 0], + "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], + "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], + "x_prenorm": x, + "masks": masks, + } + + def _get_intermediate_layers_not_chunked(self, x, n=1): + x = self.prepare_tokens_with_masks(x) + # If n is an int, take the n last blocks. If it's a list, take them + output, total_block_len = [], len(self.blocks) + blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n + for i, blk in enumerate(self.blocks): + x = blk(x) + if i in blocks_to_take: + output.append(x) + assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" + return output + + def _get_intermediate_layers_chunked(self, x, n=1): + x = self.prepare_tokens_with_masks(x) + output, i, total_block_len = [], 0, len(self.blocks[-1]) + # If n is an int, take the n last blocks. If it's a list, take them + blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n + for block_chunk in self.blocks: + for blk in block_chunk[i:]: # Passing the nn.Identity() + x = blk(x) + if i in blocks_to_take: + output.append(x) + i += 1 + assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" + return output + + def get_intermediate_layers( + self, + x: torch.Tensor, + n: Union[int, Sequence] = 1, # Layers or n last layers to take + reshape: bool = False, + return_class_token: bool = False, + norm=True, + ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: + if self.chunked_blocks: + outputs = self._get_intermediate_layers_chunked(x, n) + else: + outputs = self._get_intermediate_layers_not_chunked(x, n) + if norm: + outputs = [self.norm(out) for out in outputs] + class_tokens = [out[:, 0] for out in outputs] + outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs] + if reshape: + B, _, w, h = x.shape + outputs = [ + out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous() + for out in outputs + ] + if return_class_token: + return tuple(zip(outputs, class_tokens)) + return tuple(outputs) + + def forward(self, *args, is_training=True, **kwargs): + ret = self.forward_features(*args, **kwargs) + if is_training: + return ret + else: + return self.head(ret["x_norm_clstoken"]) + + +def init_weights_vit_timm(module: nn.Module, name: str = ""): + """ViT weight initialization, original timm impl (for reproducibility)""" + if isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + + +def vit_small(patch_size=16, num_register_tokens=0, **kwargs): + model = DinoVisionTransformer( + patch_size=patch_size, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4, + block_fn=partial(Block, attn_class=MemEffAttention), + num_register_tokens=num_register_tokens, + **kwargs, + ) + return model + + +def vit_base(patch_size=16, num_register_tokens=0, **kwargs): + model = DinoVisionTransformer( + patch_size=patch_size, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + block_fn=partial(Block, attn_class=MemEffAttention), + num_register_tokens=num_register_tokens, + **kwargs, + ) + return model + + +def vit_large(patch_size=16, num_register_tokens=0, **kwargs): + model = DinoVisionTransformer( + patch_size=patch_size, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4, + block_fn=partial(Block, attn_class=MemEffAttention), + num_register_tokens=num_register_tokens, + **kwargs, + ) + return model + + +def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs): + """ + Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 + """ + model = DinoVisionTransformer( + patch_size=patch_size, + embed_dim=1536, + depth=40, + num_heads=24, + mlp_ratio=4, + block_fn=partial(Block, attn_class=MemEffAttention), + num_register_tokens=num_register_tokens, + **kwargs, + ) + return model diff --git a/streamvggt/models/aggregator.py b/streamvggt/models/aggregator.py new file mode 100644 index 0000000000000000000000000000000000000000..c2e651840b9c2c50a40a365965ec696fc96eb32b --- /dev/null +++ b/streamvggt/models/aggregator.py @@ -0,0 +1,394 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging +import torch +import torch.nn as nn +import torch.nn.functional as F +from typing import Optional, Tuple, Union, List, Dict, Any + +from streamvggt.layers import PatchEmbed +from streamvggt.layers.block import Block +from streamvggt.layers.rope import RotaryPositionEmbedding2D, PositionGetter +from streamvggt.layers.vision_transformer import vit_small, vit_base, vit_large, vit_giant2 + +logger = logging.getLogger(__name__) + +_RESNET_MEAN = [0.485, 0.456, 0.406] +_RESNET_STD = [0.229, 0.224, 0.225] + + +class Aggregator(nn.Module): + """ + The Aggregator applies alternating-attention over input frames, + as described in VGGT: Visual Geometry Grounded Transformer. + + + Args: + img_size (int): Image size in pixels. + patch_size (int): Size of each patch for PatchEmbed. + embed_dim (int): Dimension of the token embeddings. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + mlp_ratio (float): Ratio of MLP hidden dim to embedding dim. + num_register_tokens (int): Number of register tokens. + block_fn (nn.Module): The block type used for attention (Block by default). + qkv_bias (bool): Whether to include bias in QKV projections. + proj_bias (bool): Whether to include bias in the output projection. + ffn_bias (bool): Whether to include bias in MLP layers. + patch_embed (str): Type of patch embed. e.g., "conv" or "dinov2_vitl14_reg". + aa_order (list[str]): The order of alternating attention, e.g. ["frame", "global"]. + aa_block_size (int): How many blocks to group under each attention type before switching. If not necessary, set to 1. + qk_norm (bool): Whether to apply QK normalization. + rope_freq (int): Base frequency for rotary embedding. -1 to disable. + init_values (float): Init scale for layer scale. + """ + + def __init__( + self, + img_size=518, + patch_size=14, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4.0, + num_register_tokens=4, + block_fn=Block, + qkv_bias=True, + proj_bias=True, + ffn_bias=True, + patch_embed="dinov2_vitl14_reg", + aa_order=["frame", "global"], + aa_block_size=1, + qk_norm=True, + rope_freq=100, + init_values=0.01, + ): + super().__init__() + + self.__build_patch_embed__(patch_embed, img_size, patch_size, num_register_tokens, embed_dim=embed_dim) + + # Initialize rotary position embedding if frequency > 0 + self.rope = RotaryPositionEmbedding2D(frequency=rope_freq) if rope_freq > 0 else None + self.position_getter = PositionGetter() if self.rope is not None else None + + self.frame_blocks = nn.ModuleList( + [ + block_fn( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_bias=proj_bias, + ffn_bias=ffn_bias, + init_values=init_values, + qk_norm=qk_norm, + rope=self.rope, + ) + for _ in range(depth) + ] + ) + + self.global_blocks = nn.ModuleList( + [ + block_fn( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_bias=proj_bias, + ffn_bias=ffn_bias, + init_values=init_values, + qk_norm=qk_norm, + rope=self.rope, + ) + for _ in range(depth) + ] + ) + + self.depth = depth + self.aa_order = aa_order + self.patch_size = patch_size + self.aa_block_size = aa_block_size + + # Validate that depth is divisible by aa_block_size + if self.depth % self.aa_block_size != 0: + raise ValueError(f"depth ({depth}) must be divisible by aa_block_size ({aa_block_size})") + + self.aa_block_num = self.depth // self.aa_block_size + + # Note: We have two camera tokens, one for the first frame and one for the rest + # The same applies for register tokens + self.camera_token = nn.Parameter(torch.randn(1, 2, 1, embed_dim)) + self.register_token = nn.Parameter(torch.randn(1, 2, num_register_tokens, embed_dim)) + + # The patch tokens start after the camera and register tokens + self.patch_start_idx = 1 + num_register_tokens + + # Initialize parameters with small values + nn.init.normal_(self.camera_token, std=1e-6) + nn.init.normal_(self.register_token, std=1e-6) + + # Register normalization constants as buffers + for name, value in ( + ("_resnet_mean", _RESNET_MEAN), + ("_resnet_std", _RESNET_STD), + ): + self.register_buffer( + name, + torch.FloatTensor(value).reshape(1, 1, 3, 1, 1), + persistent=False, + ) + + + def __build_patch_embed__( + self, + patch_embed, + img_size, + patch_size, + num_register_tokens, + interpolate_antialias=True, + interpolate_offset=0.0, + block_chunks=0, + init_values=1.0, + embed_dim=1024, + ): + """ + Build the patch embed layer. If 'conv', we use a + simple PatchEmbed conv layer. Otherwise, we use a vision transformer. + """ + + if "conv" in patch_embed: + self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=3, embed_dim=embed_dim) + else: + vit_models = { + "dinov2_vitl14_reg": vit_large, + "dinov2_vitb14_reg": vit_base, + "dinov2_vits14_reg": vit_small, + "dinov2_vitg2_reg": vit_giant2, + } + + self.patch_embed = vit_models[patch_embed]( + img_size=img_size, + patch_size=patch_size, + num_register_tokens=num_register_tokens, + interpolate_antialias=interpolate_antialias, + interpolate_offset=interpolate_offset, + block_chunks=block_chunks, + init_values=init_values, + ) + + # Disable gradient updates for mask token + if hasattr(self.patch_embed, "mask_token"): + self.patch_embed.mask_token.requires_grad_(False) + + def forward( + self, + images: torch.Tensor, + past_key_values=None, + use_cache=False, + past_frame_idx=0 + ) -> Tuple[List[torch.Tensor], int]: + """ + Args: + images (torch.Tensor): Input images with shape [B, S, 3, H, W], in range [0, 1]. + B: batch size, S: sequence length, 3: RGB channels, H: height, W: width + + Returns: + (list[torch.Tensor], int): + The list of outputs from the attention blocks, + and the patch_start_idx indicating where patch tokens begin. + """ + B, S, C_in, H, W = images.shape + + if use_cache and past_key_values[0] is not None: + _, _, S_true, _, _ = past_key_values[0][0].shape + S_true += 1 + else: + S_true = S + + if use_cache and S > 1: + print(f"Use KV cache expects S=1, got S={S}") + + if C_in != 3: + raise ValueError(f"Expected 3 input channels, got {C_in}") + + # Normalize images and reshape for patch embed + images = (images - self._resnet_mean.to(images.device)) / self._resnet_std.to(images.device) + + # Reshape to [B*S, C, H, W] for patch embedding + images = images.reshape(B * S, C_in, H, W) + patch_tokens = self.patch_embed(images) + + if isinstance(patch_tokens, dict): + patch_tokens = patch_tokens["x_norm_patchtokens"] + + _, P, C = patch_tokens.shape + + if use_cache: + camera_token_full = slice_expand_and_flatten(self.camera_token, B, S_true) + camera_token = camera_token_full[-1:, :, :] + + register_token_full = slice_expand_and_flatten(self.register_token, B, S_true) + register_token = register_token_full[-1:, :, :] + else: + camera_token = slice_expand_and_flatten(self.camera_token, B, S) + register_token = slice_expand_and_flatten(self.register_token, B, S) + # Concatenate special tokens with patch tokens + tokens = torch.cat([camera_token, register_token, patch_tokens], dim=1) + + pos = None + if self.rope is not None: + pos = self.position_getter(B * S, H // self.patch_size, W // self.patch_size, device=images.device) + + if self.patch_start_idx > 0: + # do not use position embedding for special tokens (camera and register tokens) + # so set pos to 0 for the special tokens + pos = pos + 1 + pos_special = torch.zeros(B * S, self.patch_start_idx, 2).to(images.device).to(pos.dtype) + pos = torch.cat([pos_special, pos], dim=1) + + # update P because we added special tokens + _, P, C = tokens.shape + + frame_idx = 0 + global_idx = 0 + output_list = [] + + for _ in range(self.aa_block_num): + for attn_type in self.aa_order: + if attn_type == "frame": + tokens, frame_idx, frame_intermediates = self._process_frame_attention( + tokens, B, S, P, C, frame_idx, pos=pos + ) + elif attn_type == "global": + if use_cache: + if past_key_values[global_idx] is not None: + k, v = past_key_values[global_idx] + tokens, global_idx, global_intermediates, new_kv = self._process_global_attention( + tokens, B, S, P, C, global_idx, pos=pos, + past_key_values_block=past_key_values[global_idx] if past_key_values[global_idx] is not None else None, + use_cache=True, + past_frame_idx=past_frame_idx + ) + past_key_values[global_idx - 1] = new_kv + else: + tokens, global_idx, global_intermediates = self._process_global_attention( + tokens, B, S, P, C, global_idx, pos=pos + ) + else: + raise ValueError(f"Unknown attention type: {attn_type}") + for i in range(len(frame_intermediates)): + # concat frame and global intermediates, [B x S x P x 2C] + concat_inter = torch.cat([frame_intermediates[i], global_intermediates[i]], dim=-1) + output_list.append(concat_inter) + + del concat_inter + del frame_intermediates + del global_intermediates + if use_cache: + return output_list, self.patch_start_idx, past_key_values + return output_list, self.patch_start_idx + + def _process_frame_attention(self, tokens, B, S, P, C, frame_idx, pos=None): + """ + Process frame attention blocks. We keep tokens in shape (B*S, P, C). + """ + # If needed, reshape tokens or positions: + if tokens.shape != (B * S, P, C): + tokens = tokens.reshape(B, S, P, C).reshape(B * S, P, C) + + if pos is not None and pos.shape != (B * S, P, 2): + pos = pos.reshape(B, S, P, 2).reshape(B * S, P, 2) + + intermediates = [] + + # by default, self.aa_block_size=1, which processes one block at a time + for _ in range(self.aa_block_size): + tokens = self.frame_blocks[frame_idx](tokens, pos=pos) + frame_idx += 1 + intermediates.append(tokens.reshape(B, S, P, C)) + + return tokens, frame_idx, intermediates + + def _process_global_attention( + self, + tokens, + B, + S, + P, + C, + global_idx, + pos=None, + past_key_values_block=None, + use_cache=False, + past_frame_idx=0 + ) -> Union[Tuple[torch.Tensor, int, List[torch.Tensor]], Tuple[torch.Tensor, int, List[torch.Tensor], List]]: + """ + Process global attention blocks. We keep tokens in shape (B, S*P, C). + """ + + if tokens.shape != (B, S * P, C): + tokens = tokens.reshape(B, S, P, C).reshape(B, S * P, C) + + if pos is not None and pos.shape != (B, S * P, 2): + pos = pos.reshape(B, S, P, 2).reshape(B, S * P, 2) + + intermediates = [] + + for _ in range(self.aa_block_size): + if not use_cache: + L = S * P + frame_ids = torch.arange(L, device=tokens.device) // P # [0,0,...,1,1,...,S-1] + future_frame = frame_ids.unsqueeze(1) < frame_ids.unsqueeze(0) + attn_mask = future_frame.to(tokens.dtype) * torch.finfo(tokens.dtype).min + else: + attn_mask = None + + if use_cache: + tokens, block_kv = self.global_blocks[global_idx]( + tokens, + pos=pos, + attn_mask=attn_mask, + past_key_values=past_key_values_block, + use_cache=True + ) + else: + tokens = self.global_blocks[global_idx](tokens, pos=pos, attn_mask=attn_mask) + global_idx += 1 + intermediates.append(tokens.reshape(B, S, P, C)) + + # if self.use_causal_global: + # del attn_mask + if use_cache: + return tokens, global_idx, intermediates, block_kv + return tokens, global_idx, intermediates + + +def slice_expand_and_flatten(token_tensor, B, S): + """ + Processes specialized tokens with shape (1, 2, X, C) for multi-frame processing: + 1) Uses the first position (index=0) for the first frame only + 2) Uses the second position (index=1) for all remaining frames (S-1 frames) + 3) Expands both to match batch size B + 4) Concatenates to form (B, S, X, C) where each sequence has 1 first-position token + followed by (S-1) second-position tokens + 5) Flattens to (B*S, X, C) for processing + + Returns: + torch.Tensor: Processed tokens with shape (B*S, X, C) + """ + + # Slice out the "query" tokens => shape (1, 1, ...) + query = token_tensor[:, 0:1, ...].expand(B, 1, *token_tensor.shape[2:]) + # Slice out the "other" tokens => shape (1, S-1, ...) + others = token_tensor[:, 1:, ...].expand(B, S - 1, *token_tensor.shape[2:]) + # Concatenate => shape (B, S, ...) + combined = torch.cat([query, others], dim=1) + + # Finally flatten => shape (B*S, ...) + combined = combined.reshape(B * S, *combined.shape[2:]) + return combined diff --git a/streamvggt/models/streamvggt.py b/streamvggt/models/streamvggt.py new file mode 100644 index 0000000000000000000000000000000000000000..e553227565649ce4e7536ae64a4e76246263d1d4 --- /dev/null +++ b/streamvggt/models/streamvggt.py @@ -0,0 +1,172 @@ +import torch +import torch.nn as nn +from huggingface_hub import PyTorchModelHubMixin # used for model hub + +from streamvggt.models.aggregator import Aggregator +from streamvggt.heads.camera_head import CameraHead +from streamvggt.heads.dpt_head import DPTHead +from streamvggt.heads.track_head import TrackHead +from transformers.file_utils import ModelOutput +from typing import Optional, Tuple, List, Any +from dataclasses import dataclass + +@dataclass +class StreamVGGTOutput(ModelOutput): + ress: Optional[List[dict]] = None + views: Optional[torch.Tensor] = None + +class StreamVGGT(nn.Module, PyTorchModelHubMixin): + def __init__(self, img_size=518, patch_size=14, embed_dim=1024): + super().__init__() + + self.aggregator = Aggregator(img_size=img_size, patch_size=patch_size, embed_dim=embed_dim) + self.camera_head = CameraHead(dim_in=2 * embed_dim) + self.point_head = DPTHead(dim_in=2 * embed_dim, output_dim=4, activation="inv_log", conf_activation="expp1") + self.depth_head = DPTHead(dim_in=2 * embed_dim, output_dim=2, activation="exp", conf_activation="expp1") + self.track_head = TrackHead(dim_in=2 * embed_dim, patch_size=patch_size) + + + + def forward( + self, + views, + query_points: torch.Tensor = None, + history_info: Optional[dict] = None, + past_key_values=None, + use_cache=False, + past_frame_idx=0 + ): + images = torch.stack( + [view["img"] for view in views], dim=0 + ).permute(1, 0, 2, 3, 4) # B S C H W + + # If without batch dimension, add it + if len(images.shape) == 4: + images = images.unsqueeze(0) + if query_points is not None and len(query_points.shape) == 2: + query_points = query_points.unsqueeze(0) + + if history_info is None: + history_info = {"token": None} + + aggregated_tokens_list, patch_start_idx = self.aggregator(images) + predictions = {} + + with torch.cuda.amp.autocast(enabled=False): + if self.camera_head is not None: + pose_enc_list = self.camera_head(aggregated_tokens_list) + predictions["pose_enc"] = pose_enc_list[-1] # pose encoding of the last iteration + + if self.depth_head is not None: + depth, depth_conf = self.depth_head( + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx + ) + predictions["depth"] = depth + predictions["depth_conf"] = depth_conf + + if self.point_head is not None: + pts3d, pts3d_conf = self.point_head( + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx + ) + predictions["world_points"] = pts3d + predictions["world_points_conf"] = pts3d_conf + + if self.track_head is not None and query_points is not None: + track_list, vis, conf = self.track_head( + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx, query_points=query_points + ) + predictions["track"] = track_list[-1] # track of the last iteration + predictions["vis"] = vis + predictions["conf"] = conf + predictions["images"] = images + + B, S = images.shape[:2] + ress = [] + for s in range(S): + res = { + 'pts3d_in_other_view': predictions['world_points'][:, s], # [B, H, W, 3] + 'conf': predictions['world_points_conf'][:, s], # [B, H, W] + + 'depth': predictions['depth'][:, s], # [B, H, W, 1] + 'depth_conf': predictions['depth_conf'][:, s], # [B, H, W] + 'camera_pose': predictions['pose_enc'][:, s, :], # [B, 9] + + **({'valid_mask': views[s]["valid_mask"]} + if 'valid_mask' in views[s] else {}), # [B, H, W] + + **({'track': predictions['track'][:, s], # [B, N, 2] + 'vis': predictions['vis'][:, s], # [B, N] + 'track_conf': predictions['conf'][:, s]} + if 'track' in predictions else {}) + } + ress.append(res) + return StreamVGGTOutput(ress=ress, views=views) # [S] [B, C, H, W] + + def inference(self, frames, query_points: torch.Tensor = None, past_key_values=None): + past_key_values = [None] * self.aggregator.depth + past_key_values_camera = [None] * self.camera_head.trunk_depth + + all_ress = [] + processed_frames = [] + + for i, frame in enumerate(frames): + images = frame["img"].unsqueeze(0) + aggregator_output = self.aggregator( + images, + past_key_values=past_key_values, + use_cache=True, + past_frame_idx=i + ) + + if isinstance(aggregator_output, tuple) and len(aggregator_output) == 3: + aggregated_tokens, patch_start_idx, past_key_values = aggregator_output + else: + aggregated_tokens, patch_start_idx = aggregator_output + + with torch.cuda.amp.autocast(enabled=False): + if self.camera_head is not None: + pose_enc, past_key_values_camera = self.camera_head(aggregated_tokens, past_key_values_camera=past_key_values_camera, use_cache=True) + pose_enc = pose_enc[-1] + camera_pose = pose_enc[:, 0, :] + + if self.depth_head is not None: + depth, depth_conf = self.depth_head( + aggregated_tokens, images=images, patch_start_idx=patch_start_idx + ) + depth = depth[:, 0] + depth_conf = depth_conf[:, 0] + + if self.point_head is not None: + pts3d, pts3d_conf = self.point_head( + aggregated_tokens, images=images, patch_start_idx=patch_start_idx + ) + pts3d = pts3d[:, 0] + pts3d_conf = pts3d_conf[:, 0] + + if self.track_head is not None and query_points is not None: + track_list, vis, conf = self.track_head( + aggregated_tokens, images=images, patch_start_idx=patch_start_idx, query_points=query_points + ) + track = track_list[-1][:, 0] + query_points = track + vis = vis[:, 0] + track_conf = conf[:, 0] + + all_ress.append({ + 'pts3d_in_other_view': pts3d, + 'conf': pts3d_conf, + 'depth': depth, + 'depth_conf': depth_conf, + 'camera_pose': camera_pose, + **({'valid_mask': frame["valid_mask"]} + if 'valid_mask' in frame else {}), + + **({'track': track, + 'vis': vis, + 'track_conf': track_conf} + if query_points is not None else {}) + }) + processed_frames.append(frame) + + output = StreamVGGTOutput(ress=all_ress, views=processed_frames) + return output \ No newline at end of file diff --git a/streamvggt/utils/geometry.py b/streamvggt/utils/geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..8ebd25dbc6cac6b0095956524c4f0628410dd5cb --- /dev/null +++ b/streamvggt/utils/geometry.py @@ -0,0 +1,166 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import os +import torch +import numpy as np + + +def unproject_depth_map_to_point_map( + depth_map: np.ndarray, extrinsics_cam: np.ndarray, intrinsics_cam: np.ndarray +) -> np.ndarray: + """ + Unproject a batch of depth maps to 3D world coordinates. + + Args: + depth_map (np.ndarray): Batch of depth maps of shape (S, H, W, 1) or (S, H, W) + extrinsics_cam (np.ndarray): Batch of camera extrinsic matrices of shape (S, 3, 4) + intrinsics_cam (np.ndarray): Batch of camera intrinsic matrices of shape (S, 3, 3) + + Returns: + np.ndarray: Batch of 3D world coordinates of shape (S, H, W, 3) + """ + if isinstance(depth_map, torch.Tensor): + depth_map = depth_map.cpu().numpy() + if isinstance(extrinsics_cam, torch.Tensor): + extrinsics_cam = extrinsics_cam.cpu().numpy() + if isinstance(intrinsics_cam, torch.Tensor): + intrinsics_cam = intrinsics_cam.cpu().numpy() + + world_points_list = [] + for frame_idx in range(depth_map.shape[0]): + cur_world_points, _, _ = depth_to_world_coords_points( + depth_map[frame_idx].squeeze(-1), extrinsics_cam[frame_idx], intrinsics_cam[frame_idx] + ) + world_points_list.append(cur_world_points) + world_points_array = np.stack(world_points_list, axis=0) + + return world_points_array + + +def depth_to_world_coords_points( + depth_map: np.ndarray, + extrinsic: np.ndarray, + intrinsic: np.ndarray, + eps=1e-8, +) -> tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Convert a depth map to world coordinates. + + Args: + depth_map (np.ndarray): Depth map of shape (H, W). + intrinsic (np.ndarray): Camera intrinsic matrix of shape (3, 3). + extrinsic (np.ndarray): Camera extrinsic matrix of shape (3, 4). OpenCV camera coordinate convention, cam from world. + + Returns: + tuple[np.ndarray, np.ndarray]: World coordinates (H, W, 3) and valid depth mask (H, W). + """ + if depth_map is None: + return None, None, None + + # Valid depth mask + point_mask = depth_map > eps + + # Convert depth map to camera coordinates + cam_coords_points = depth_to_cam_coords_points(depth_map, intrinsic) + + # Multiply with the inverse of extrinsic matrix to transform to world coordinates + # extrinsic_inv is 4x4 (note closed_form_inverse_OpenCV is batched, the output is (N, 4, 4)) + cam_to_world_extrinsic = closed_form_inverse_se3(extrinsic[None])[0] + + R_cam_to_world = cam_to_world_extrinsic[:3, :3] + t_cam_to_world = cam_to_world_extrinsic[:3, 3] + + # Apply the rotation and translation to the camera coordinates + world_coords_points = np.dot(cam_coords_points, R_cam_to_world.T) + t_cam_to_world # HxWx3, 3x3 -> HxWx3 + # world_coords_points = np.einsum("ij,hwj->hwi", R_cam_to_world, cam_coords_points) + t_cam_to_world + + return world_coords_points, cam_coords_points, point_mask + + +def depth_to_cam_coords_points(depth_map: np.ndarray, intrinsic: np.ndarray) -> tuple[np.ndarray, np.ndarray]: + """ + Convert a depth map to camera coordinates. + + Args: + depth_map (np.ndarray): Depth map of shape (H, W). + intrinsic (np.ndarray): Camera intrinsic matrix of shape (3, 3). + + Returns: + tuple[np.ndarray, np.ndarray]: Camera coordinates (H, W, 3) + """ + H, W = depth_map.shape + assert intrinsic.shape == (3, 3), "Intrinsic matrix must be 3x3" + assert intrinsic[0, 1] == 0 and intrinsic[1, 0] == 0, "Intrinsic matrix must have zero skew" + + # Intrinsic parameters + fu, fv = intrinsic[0, 0], intrinsic[1, 1] + cu, cv = intrinsic[0, 2], intrinsic[1, 2] + + # Generate grid of pixel coordinates + u, v = np.meshgrid(np.arange(W), np.arange(H)) + + # Unproject to camera coordinates + x_cam = (u - cu) * depth_map / fu + y_cam = (v - cv) * depth_map / fv + z_cam = depth_map + + # Stack to form camera coordinates + cam_coords = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(np.float32) + + return cam_coords + + +def closed_form_inverse_se3(se3, R=None, T=None): + """ + Compute the inverse of each 4x4 (or 3x4) SE3 matrix in a batch. + + If `R` and `T` are provided, they must correspond to the rotation and translation + components of `se3`. Otherwise, they will be extracted from `se3`. + + Args: + se3: Nx4x4 or Nx3x4 array or tensor of SE3 matrices. + R (optional): Nx3x3 array or tensor of rotation matrices. + T (optional): Nx3x1 array or tensor of translation vectors. + + Returns: + Inverted SE3 matrices with the same type and device as `se3`. + + Shapes: + se3: (N, 4, 4) + R: (N, 3, 3) + T: (N, 3, 1) + """ + # Check if se3 is a numpy array or a torch tensor + is_numpy = isinstance(se3, np.ndarray) + + # Validate shapes + if se3.shape[-2:] != (4, 4) and se3.shape[-2:] != (3, 4): + raise ValueError(f"se3 must be of shape (N,4,4), got {se3.shape}.") + + # Extract R and T if not provided + if R is None: + R = se3[:, :3, :3] # (N,3,3) + if T is None: + T = se3[:, :3, 3:] # (N,3,1) + + # Transpose R + if is_numpy: + # Compute the transpose of the rotation for NumPy + R_transposed = np.transpose(R, (0, 2, 1)) + # -R^T t for NumPy + top_right = -np.matmul(R_transposed, T) + inverted_matrix = np.tile(np.eye(4), (len(R), 1, 1)) + else: + R_transposed = R.transpose(1, 2) # (N,3,3) + top_right = -torch.bmm(R_transposed, T) # (N,3,1) + inverted_matrix = torch.eye(4, 4)[None].repeat(len(R), 1, 1) + inverted_matrix = inverted_matrix.to(R.dtype).to(R.device) + + inverted_matrix[:, :3, :3] = R_transposed + inverted_matrix[:, :3, 3:] = top_right + + return inverted_matrix diff --git a/streamvggt/utils/load_fn.py b/streamvggt/utils/load_fn.py new file mode 100644 index 0000000000000000000000000000000000000000..46a226ef30e8b5671c905cfc5ab53488ed4cced2 --- /dev/null +++ b/streamvggt/utils/load_fn.py @@ -0,0 +1,146 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +from PIL import Image +from torchvision import transforms as TF + + +def load_and_preprocess_images(image_path_list, mode="crop"): + """ + A quick start function to load and preprocess images for model input. + This assumes the images should have the same shape for easier batching, but our model can also work well with different shapes. + + Args: + image_path_list (list): List of paths to image files + mode (str, optional): Preprocessing mode, either "crop" or "pad". + - "crop" (default): Sets width to 518px and center crops height if needed. + - "pad": Preserves all pixels by making the largest dimension 518px + and padding the smaller dimension to reach a square shape. + + Returns: + torch.Tensor: Batched tensor of preprocessed images with shape (N, 3, H, W) + + Raises: + ValueError: If the input list is empty or if mode is invalid + + Notes: + - Images with different dimensions will be padded with white (value=1.0) + - A warning is printed when images have different shapes + - When mode="crop": The function ensures width=518px while maintaining aspect ratio + and height is center-cropped if larger than 518px + - When mode="pad": The function ensures the largest dimension is 518px while maintaining aspect ratio + and the smaller dimension is padded to reach a square shape (518x518) + - Dimensions are adjusted to be divisible by 14 for compatibility with model requirements + """ + # Check for empty list + if len(image_path_list) == 0: + raise ValueError("At least 1 image is required") + + # Validate mode + if mode not in ["crop", "pad"]: + raise ValueError("Mode must be either 'crop' or 'pad'") + + images = [] + shapes = set() + to_tensor = TF.ToTensor() + target_size = 518 + + # First process all images and collect their shapes + for image_path in image_path_list: + + # Open image + img = Image.open(image_path) + + # If there's an alpha channel, blend onto white background: + if img.mode == "RGBA": + # Create white background + background = Image.new("RGBA", img.size, (255, 255, 255, 255)) + # Alpha composite onto the white background + img = Image.alpha_composite(background, img) + + # Now convert to "RGB" (this step assigns white for transparent areas) + img = img.convert("RGB") + + width, height = img.size + + if mode == "pad": + # Make the largest dimension 518px while maintaining aspect ratio + if width >= height: + new_width = target_size + new_height = round(height * (new_width / width) / 14) * 14 # Make divisible by 14 + else: + new_height = target_size + new_width = round(width * (new_height / height) / 14) * 14 # Make divisible by 14 + else: # mode == "crop" + # Original behavior: set width to 518px + new_width = target_size + # Calculate height maintaining aspect ratio, divisible by 14 + new_height = round(height * (new_width / width) / 14) * 14 + + # Resize with new dimensions (width, height) + img = img.resize((new_width, new_height), Image.Resampling.BICUBIC) + img = to_tensor(img) # Convert to tensor (0, 1) + + # Center crop height if it's larger than 518 (only in crop mode) + if mode == "crop" and new_height > target_size: + start_y = (new_height - target_size) // 2 + img = img[:, start_y: start_y + target_size, :] + + # For pad mode, pad to make a square of target_size x target_size + if mode == "pad": + h_padding = target_size - img.shape[1] + w_padding = target_size - img.shape[2] + + if h_padding > 0 or w_padding > 0: + pad_top = h_padding // 2 + pad_bottom = h_padding - pad_top + pad_left = w_padding // 2 + pad_right = w_padding - pad_left + + # Pad with white (value=1.0) + img = torch.nn.functional.pad( + img, (pad_left, pad_right, pad_top, pad_bottom), mode="constant", value=1.0 + ) + + shapes.add((img.shape[1], img.shape[2])) + images.append(img) + + # Check if we have different shapes + # In theory our model can also work well with different shapes + if len(shapes) > 1: + print(f"Warning: Found images with different shapes: {shapes}") + # Find maximum dimensions + max_height = max(shape[0] for shape in shapes) + max_width = max(shape[1] for shape in shapes) + + # Pad images if necessary + padded_images = [] + for img in images: + h_padding = max_height - img.shape[1] + w_padding = max_width - img.shape[2] + + if h_padding > 0 or w_padding > 0: + pad_top = h_padding // 2 + pad_bottom = h_padding - pad_top + pad_left = w_padding // 2 + pad_right = w_padding - pad_left + + img = torch.nn.functional.pad( + img, (pad_left, pad_right, pad_top, pad_bottom), mode="constant", value=1.0 + ) + padded_images.append(img) + images = padded_images + + images = torch.stack(images) # concatenate images + + # Ensure correct shape when single image + if len(image_path_list) == 1: + # Verify shape is (1, C, H, W) + if images.dim() == 3: + images = images.unsqueeze(0) + + return images diff --git a/vggt/utils/__pycache__/pose_enc.cpython-310.pyc b/streamvggt/utils/pose_enc.py similarity index 59% rename from vggt/utils/__pycache__/pose_enc.cpython-310.pyc rename to streamvggt/utils/pose_enc.py index aa1b72512089483ce434a727f9ff7d69ab42faa1..2f98b0878cb13451b8cdb80074349cbf2644c5fa 100644 Binary files a/vggt/utils/__pycache__/pose_enc.cpython-310.pyc and b/streamvggt/utils/pose_enc.py differ diff --git a/streamvggt/utils/rotation.py b/streamvggt/utils/rotation.py new file mode 100644 index 0000000000000000000000000000000000000000..657583e6915437c824c192d51939990b589a14fa --- /dev/null +++ b/streamvggt/utils/rotation.py @@ -0,0 +1,138 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# Modified from PyTorch3D, https://github.com/facebookresearch/pytorch3d + +import torch +import numpy as np +import torch.nn.functional as F + + +def quat_to_mat(quaternions: torch.Tensor) -> torch.Tensor: + """ + Quaternion Order: XYZW or say ijkr, scalar-last + + Convert rotations given as quaternions to rotation matrices. + Args: + quaternions: quaternions with real part last, + as tensor of shape (..., 4). + + Returns: + Rotation matrices as tensor of shape (..., 3, 3). + """ + i, j, k, r = torch.unbind(quaternions, -1) + # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. + two_s = 2.0 / (quaternions * quaternions).sum(-1) + + o = torch.stack( + ( + 1 - two_s * (j * j + k * k), + two_s * (i * j - k * r), + two_s * (i * k + j * r), + two_s * (i * j + k * r), + 1 - two_s * (i * i + k * k), + two_s * (j * k - i * r), + two_s * (i * k - j * r), + two_s * (j * k + i * r), + 1 - two_s * (i * i + j * j), + ), + -1, + ) + return o.reshape(quaternions.shape[:-1] + (3, 3)) + + +def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor: + """ + Convert rotations given as rotation matrices to quaternions. + + Args: + matrix: Rotation matrices as tensor of shape (..., 3, 3). + + Returns: + quaternions with real part last, as tensor of shape (..., 4). + Quaternion Order: XYZW or say ijkr, scalar-last + """ + if matrix.size(-1) != 3 or matrix.size(-2) != 3: + raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") + + batch_dim = matrix.shape[:-2] + m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(matrix.reshape(batch_dim + (9,)), dim=-1) + + q_abs = _sqrt_positive_part( + torch.stack( + [ + 1.0 + m00 + m11 + m22, + 1.0 + m00 - m11 - m22, + 1.0 - m00 + m11 - m22, + 1.0 - m00 - m11 + m22, + ], + dim=-1, + ) + ) + + # we produce the desired quaternion multiplied by each of r, i, j, k + quat_by_rijk = torch.stack( + [ + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `int`. + torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `int`. + torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `int`. + torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), + # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and + # `int`. + torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), + ], + dim=-2, + ) + + # We floor here at 0.1 but the exact level is not important; if q_abs is small, + # the candidate won't be picked. + flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) + quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) + + # if not for numerical problems, quat_candidates[i] should be same (up to a sign), + # forall i; we pick the best-conditioned one (with the largest denominator) + out = quat_candidates[F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :].reshape(batch_dim + (4,)) + + # Convert from rijk to ijkr + out = out[..., [1, 2, 3, 0]] + + out = standardize_quaternion(out) + + return out + + +def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: + """ + Returns torch.sqrt(torch.max(0, x)) + but with a zero subgradient where x is 0. + """ + ret = torch.zeros_like(x) + positive_mask = x > 0 + if torch.is_grad_enabled(): + ret[positive_mask] = torch.sqrt(x[positive_mask]) + else: + ret = torch.where(positive_mask, torch.sqrt(x), ret) + return ret + + +def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: + """ + Convert a unit quaternion to a standard form: one in which the real + part is non negative. + + Args: + quaternions: Quaternions with real part last, + as tensor of shape (..., 4). + + Returns: + Standardized quaternions as tensor of shape (..., 4). + """ + return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions) diff --git a/streamvggt/utils/visual_track.py b/streamvggt/utils/visual_track.py new file mode 100644 index 0000000000000000000000000000000000000000..796c114ccba00b5f7850e04b9444a6cd5c44b154 --- /dev/null +++ b/streamvggt/utils/visual_track.py @@ -0,0 +1,239 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import cv2 +import torch +import numpy as np +import os + + +def color_from_xy(x, y, W, H, cmap_name="hsv"): + """ + Map (x, y) -> color in (R, G, B). + 1) Normalize x,y to [0,1]. + 2) Combine them into a single scalar c in [0,1]. + 3) Use matplotlib's colormap to convert c -> (R,G,B). + + You can customize step 2, e.g., c = (x + y)/2, or some function of (x, y). + """ + import matplotlib.cm + import matplotlib.colors + + x_norm = x / max(W - 1, 1) + y_norm = y / max(H - 1, 1) + # Simple combination: + c = (x_norm + y_norm) / 2.0 + + cmap = matplotlib.cm.get_cmap(cmap_name) + # cmap(c) -> (r,g,b,a) in [0,1] + rgba = cmap(c) + r, g, b = rgba[0], rgba[1], rgba[2] + return (r, g, b) # in [0,1], RGB order + + +def get_track_colors_by_position(tracks_b, vis_mask_b=None, image_width=None, image_height=None, cmap_name="hsv"): + """ + Given all tracks in one sample (b), compute a (N,3) array of RGB color values + in [0,255]. The color is determined by the (x,y) position in the first + visible frame for each track. + + Args: + tracks_b: Tensor of shape (S, N, 2). (x,y) for each track in each frame. + vis_mask_b: (S, N) boolean mask; if None, assume all are visible. + image_width, image_height: used for normalizing (x, y). + cmap_name: for matplotlib (e.g., 'hsv', 'rainbow', 'jet'). + + Returns: + track_colors: np.ndarray of shape (N, 3), each row is (R,G,B) in [0,255]. + """ + S, N, _ = tracks_b.shape + track_colors = np.zeros((N, 3), dtype=np.uint8) + + if vis_mask_b is None: + # treat all as visible + vis_mask_b = torch.ones(S, N, dtype=torch.bool, device=tracks_b.device) + + for i in range(N): + # Find first visible frame for track i + visible_frames = torch.where(vis_mask_b[:, i])[0] + if len(visible_frames) == 0: + # track is never visible; just assign black or something + track_colors[i] = (0, 0, 0) + continue + + first_s = int(visible_frames[0].item()) + # use that frame's (x,y) + x, y = tracks_b[first_s, i].tolist() + + # map (x,y) -> (R,G,B) in [0,1] + r, g, b = color_from_xy(x, y, W=image_width, H=image_height, cmap_name=cmap_name) + # scale to [0,255] + r, g, b = int(r * 255), int(g * 255), int(b * 255) + track_colors[i] = (r, g, b) + + return track_colors + + +def visualize_tracks_on_images( + images, + tracks, + track_vis_mask=None, + out_dir="track_visuals_concat_by_xy", + image_format="CHW", # "CHW" or "HWC" + normalize_mode="[0,1]", + cmap_name="hsv", # e.g. "hsv", "rainbow", "jet" + frames_per_row=4, # New parameter for grid layout + save_grid=True, # Flag to control whether to save the grid image +): + """ + Visualizes frames in a grid layout with specified frames per row. + Each track's color is determined by its (x,y) position + in the first visible frame (or frame 0 if always visible). + Finally convert the BGR result to RGB before saving. + Also saves each individual frame as a separate PNG file. + + Args: + images: torch.Tensor (S, 3, H, W) if CHW or (S, H, W, 3) if HWC. + tracks: torch.Tensor (S, N, 2), last dim = (x, y). + track_vis_mask: torch.Tensor (S, N) or None. + out_dir: folder to save visualizations. + image_format: "CHW" or "HWC". + normalize_mode: "[0,1]", "[-1,1]", or None for direct raw -> 0..255 + cmap_name: a matplotlib colormap name for color_from_xy. + frames_per_row: number of frames to display in each row of the grid. + save_grid: whether to save all frames in one grid image. + + Returns: + None (saves images in out_dir). + """ + + if len(tracks.shape) == 4: + tracks = tracks.squeeze(0) + images = images.squeeze(0) + if track_vis_mask is not None: + track_vis_mask = track_vis_mask.squeeze(0) + + import matplotlib + + matplotlib.use("Agg") # for non-interactive (optional) + + os.makedirs(out_dir, exist_ok=True) + + S = images.shape[0] + _, N, _ = tracks.shape # (S, N, 2) + + # Move to CPU + images = images.cpu().clone() + tracks = tracks.cpu().clone() + if track_vis_mask is not None: + track_vis_mask = track_vis_mask.cpu().clone() + + # Infer H, W from images shape + if image_format == "CHW": + # e.g. images[s].shape = (3, H, W) + H, W = images.shape[2], images.shape[3] + else: + # e.g. images[s].shape = (H, W, 3) + H, W = images.shape[1], images.shape[2] + + # Pre-compute the color for each track i based on first visible position + track_colors_rgb = get_track_colors_by_position( + tracks, # shape (S, N, 2) + vis_mask_b=track_vis_mask if track_vis_mask is not None else None, + image_width=W, + image_height=H, + cmap_name=cmap_name, + ) + + # We'll accumulate each frame's drawn image in a list + frame_images = [] + + for s in range(S): + # shape => either (3, H, W) or (H, W, 3) + img = images[s] + + # Convert to (H, W, 3) + if image_format == "CHW": + img = img.permute(1, 2, 0) # (H, W, 3) + # else "HWC", do nothing + + img = img.numpy().astype(np.float32) + + # Scale to [0,255] if needed + if normalize_mode == "[0,1]": + img = np.clip(img, 0, 1) * 255.0 + elif normalize_mode == "[-1,1]": + img = (img + 1.0) * 0.5 * 255.0 + img = np.clip(img, 0, 255.0) + # else no normalization + + # Convert to uint8 + img = img.astype(np.uint8) + + # For drawing in OpenCV, convert to BGR + img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) + + # Draw each visible track + cur_tracks = tracks[s] # shape (N, 2) + if track_vis_mask is not None: + valid_indices = torch.where(track_vis_mask[s])[0] + else: + valid_indices = range(N) + + cur_tracks_np = cur_tracks.numpy() + for i in valid_indices: + x, y = cur_tracks_np[i] + pt = (int(round(x)), int(round(y))) + + # track_colors_rgb[i] is (R,G,B). For OpenCV circle, we need BGR + R, G, B = track_colors_rgb[i] + color_bgr = (int(B), int(G), int(R)) + cv2.circle(img_bgr, pt, radius=3, color=color_bgr, thickness=-1) + + # Convert back to RGB for consistent final saving: + img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) + + # Save individual frame + frame_path = os.path.join(out_dir, f"frame_{s:04d}.png") + # Convert to BGR for OpenCV imwrite + frame_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR) + cv2.imwrite(frame_path, frame_bgr) + + frame_images.append(img_rgb) + + # Only create and save the grid image if save_grid is True + if save_grid: + # Calculate grid dimensions + num_rows = (S + frames_per_row - 1) // frames_per_row # Ceiling division + + # Create a grid of images + grid_img = None + for row in range(num_rows): + start_idx = row * frames_per_row + end_idx = min(start_idx + frames_per_row, S) + + # Concatenate this row horizontally + row_img = np.concatenate(frame_images[start_idx:end_idx], axis=1) + + # If this row has fewer than frames_per_row images, pad with black + if end_idx - start_idx < frames_per_row: + padding_width = (frames_per_row - (end_idx - start_idx)) * W + padding = np.zeros((H, padding_width, 3), dtype=np.uint8) + row_img = np.concatenate([row_img, padding], axis=1) + + # Add this row to the grid + if grid_img is None: + grid_img = row_img + else: + grid_img = np.concatenate([grid_img, row_img], axis=0) + + out_path = os.path.join(out_dir, "tracks_grid.png") + # Convert back to BGR for OpenCV imwrite + grid_img_bgr = cv2.cvtColor(grid_img, cv2.COLOR_RGB2BGR) + cv2.imwrite(out_path, grid_img_bgr) + print(f"[INFO] Saved color-by-XY track visualization grid -> {out_path}") + + print(f"[INFO] Saved {S} individual frames to {out_dir}/frame_*.png") diff --git a/vggt/heads/__pycache__/camera_head.cpython-310.pyc b/vggt/heads/__pycache__/camera_head.cpython-310.pyc deleted file mode 100644 index 8cbfa972f550663138d0035dbbb4ae4af4576ca6..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/camera_head.cpython-310.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/camera_head.cpython-311.pyc b/vggt/heads/__pycache__/camera_head.cpython-311.pyc deleted file mode 100644 index cc25b236c270c26df0c6703591904919638f018d..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/camera_head.cpython-311.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/camera_head.cpython-312.pyc b/vggt/heads/__pycache__/camera_head.cpython-312.pyc deleted file mode 100644 index ec75f53e472e06c436761d154039b2a530bbd877..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/camera_head.cpython-312.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/dpt_head.cpython-310.pyc b/vggt/heads/__pycache__/dpt_head.cpython-310.pyc deleted file mode 100644 index 43b807dd48cb6b3aa057833377975d59b6a52a90..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/dpt_head.cpython-310.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/dpt_head.cpython-311.pyc b/vggt/heads/__pycache__/dpt_head.cpython-311.pyc deleted file mode 100644 index 87eff0fa249a0f2346d5dbd39454dd5012acf018..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/dpt_head.cpython-311.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/dpt_head.cpython-312.pyc b/vggt/heads/__pycache__/dpt_head.cpython-312.pyc deleted file mode 100644 index ca35ebc9f6a7fe354fdc01b02b21b7140a94b941..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/dpt_head.cpython-312.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/head_act.cpython-310.pyc b/vggt/heads/__pycache__/head_act.cpython-310.pyc deleted file mode 100644 index 93b79bdef56a06e2835e2283513c3aafa878aa99..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/head_act.cpython-310.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/head_act.cpython-311.pyc b/vggt/heads/__pycache__/head_act.cpython-311.pyc deleted file mode 100644 index f3dee4ed1c0344e9155274d7eb5bbd1a15a7bf1b..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/head_act.cpython-311.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/head_act.cpython-312.pyc b/vggt/heads/__pycache__/head_act.cpython-312.pyc deleted file mode 100644 index 4cfecec8f876bd14796c689317e5777bd3bc06b0..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/head_act.cpython-312.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/track_head.cpython-310.pyc b/vggt/heads/__pycache__/track_head.cpython-310.pyc deleted file mode 100644 index 6af9058c87e1cbaaf0bba0196d64ede43e536966..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/track_head.cpython-310.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/track_head.cpython-311.pyc b/vggt/heads/__pycache__/track_head.cpython-311.pyc deleted file mode 100644 index fffa3acbcda62f6c92f86aec2b364cbe8f76343f..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/track_head.cpython-311.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/track_head.cpython-312.pyc b/vggt/heads/__pycache__/track_head.cpython-312.pyc deleted file mode 100644 index 3899d6e65cb83f79bcf7de8218df5faff7898a5f..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/track_head.cpython-312.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/utils.cpython-310.pyc b/vggt/heads/__pycache__/utils.cpython-310.pyc deleted file mode 100644 index 249f94fb8f68ea69f1b76846fd11df7ee7e476a7..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/utils.cpython-310.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/utils.cpython-311.pyc b/vggt/heads/__pycache__/utils.cpython-311.pyc deleted file mode 100644 index 73f5259fa20f6838ed05414d1586023f0b546a8f..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/utils.cpython-311.pyc and /dev/null differ diff --git a/vggt/heads/__pycache__/utils.cpython-312.pyc b/vggt/heads/__pycache__/utils.cpython-312.pyc deleted file mode 100644 index d03b6aceb91c7abfea8397f546a57be4c60f726e..0000000000000000000000000000000000000000 Binary files a/vggt/heads/__pycache__/utils.cpython-312.pyc and /dev/null differ diff --git a/vggt/heads/track_modules/__pycache__/__init__.cpython-310.pyc b/vggt/heads/track_modules/__pycache__/__init__.cpython-310.pyc index 06f349ee47e4ba67597cf329b74b69d72e952195..e50467b9dcec4c21e07bc8076557afe36ed7b17e 100644 Binary files a/vggt/heads/track_modules/__pycache__/__init__.cpython-310.pyc and b/vggt/heads/track_modules/__pycache__/__init__.cpython-310.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/__init__.cpython-311.pyc b/vggt/heads/track_modules/__pycache__/__init__.cpython-311.pyc index bb0692535a41a87e1e0cc7fee86138188dc9d8fd..32a04302ec5666ff78f6a096767070e9c2eaf27b 100644 Binary files a/vggt/heads/track_modules/__pycache__/__init__.cpython-311.pyc and b/vggt/heads/track_modules/__pycache__/__init__.cpython-311.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/__init__.cpython-312.pyc b/vggt/heads/track_modules/__pycache__/__init__.cpython-312.pyc index d04dbf9cd4f1161cd2460f9dcd079f3f3f7678f0..2e7bff5d96f33073c3e9eb1ef2ce6de883d6dad5 100644 Binary files a/vggt/heads/track_modules/__pycache__/__init__.cpython-312.pyc and b/vggt/heads/track_modules/__pycache__/__init__.cpython-312.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-310.pyc b/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-310.pyc index e3b05c9d2de1ea89ff4019c55ba6de1bdd41fa83..145c10a0c6f9251398653ce5252c4503002a3ecd 100644 Binary files a/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-310.pyc and b/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-310.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-311.pyc b/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-311.pyc index cce940fa0bcdc1da9963812900a34047af2f3db6..3f676087da31cb46dc0df52618ee62ddd16638c4 100644 Binary files a/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-311.pyc and b/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-311.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-312.pyc b/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-312.pyc index ab63e60f1317c870103cdf56ab03b6fac022edaf..6669acf1624a10ad68c98a0fcdb53299d621f2d0 100644 Binary files a/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-312.pyc and b/vggt/heads/track_modules/__pycache__/base_track_predictor.cpython-312.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/blocks.cpython-310.pyc b/vggt/heads/track_modules/__pycache__/blocks.cpython-310.pyc index f0b8b67f009e4e20a92530d6a8a7d2505c5ce187..893afebfd051092803e505919a5f2a91f59c8772 100644 Binary files a/vggt/heads/track_modules/__pycache__/blocks.cpython-310.pyc and b/vggt/heads/track_modules/__pycache__/blocks.cpython-310.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/blocks.cpython-311.pyc b/vggt/heads/track_modules/__pycache__/blocks.cpython-311.pyc index 67b4f7467baf6d4ce6eb44078aa68997c3ffcd43..49a68cb18e956ed7d333d20b4b4b940381a44e9a 100644 Binary files a/vggt/heads/track_modules/__pycache__/blocks.cpython-311.pyc and b/vggt/heads/track_modules/__pycache__/blocks.cpython-311.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/blocks.cpython-312.pyc b/vggt/heads/track_modules/__pycache__/blocks.cpython-312.pyc index 2c5888fc278e7185ca78b53672a4b0cce248bdab..41bb8994b01c085b8a23d76d6f1c0e735271b6bc 100644 Binary files a/vggt/heads/track_modules/__pycache__/blocks.cpython-312.pyc and b/vggt/heads/track_modules/__pycache__/blocks.cpython-312.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/modules.cpython-310.pyc b/vggt/heads/track_modules/__pycache__/modules.cpython-310.pyc index cb5118633e842a9613b0a2bd8fd4fec6d31dff71..09dc8714fe8b61fd5eb976f8547977f688ac94bf 100644 Binary files a/vggt/heads/track_modules/__pycache__/modules.cpython-310.pyc and b/vggt/heads/track_modules/__pycache__/modules.cpython-310.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/modules.cpython-311.pyc b/vggt/heads/track_modules/__pycache__/modules.cpython-311.pyc index 912ba2a6dc74ecea87cd8f231a009e9785e5fd73..abb96503f0478504487c074d49adb1dcbe49e548 100644 Binary files a/vggt/heads/track_modules/__pycache__/modules.cpython-311.pyc and b/vggt/heads/track_modules/__pycache__/modules.cpython-311.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/modules.cpython-312.pyc b/vggt/heads/track_modules/__pycache__/modules.cpython-312.pyc index ffb4929483f83e8bc6ad2091d335f89e2e6d5df7..7181689ea7bdf25f01b57caf4fc38acc7c462fdc 100644 Binary files a/vggt/heads/track_modules/__pycache__/modules.cpython-312.pyc and b/vggt/heads/track_modules/__pycache__/modules.cpython-312.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/utils.cpython-310.pyc b/vggt/heads/track_modules/__pycache__/utils.cpython-310.pyc index bfc767f5a8ed809ff18fddbd0ceb12e752fa5ba2..460b6f4c9dd76dec8a7eb42b52f3c76c95f87742 100644 Binary files a/vggt/heads/track_modules/__pycache__/utils.cpython-310.pyc and b/vggt/heads/track_modules/__pycache__/utils.cpython-310.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/utils.cpython-311.pyc b/vggt/heads/track_modules/__pycache__/utils.cpython-311.pyc index 1f0b220ac55878862b8e4ec432abb3e94c17e30d..9027d296e1f28fdb8fffcc117329095929219b63 100644 Binary files a/vggt/heads/track_modules/__pycache__/utils.cpython-311.pyc and b/vggt/heads/track_modules/__pycache__/utils.cpython-311.pyc differ diff --git a/vggt/heads/track_modules/__pycache__/utils.cpython-312.pyc b/vggt/heads/track_modules/__pycache__/utils.cpython-312.pyc index e0fba979c6305de05224706f9c3935fca9918c6d..ed26ea666dd0e47cd0eb0ca67cafb76077c55af5 100644 Binary files a/vggt/heads/track_modules/__pycache__/utils.cpython-312.pyc and b/vggt/heads/track_modules/__pycache__/utils.cpython-312.pyc differ diff --git a/vggt/layers/__pycache__/__init__.cpython-310.pyc b/vggt/layers/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 7f928c0d84fcc9306a05350326386523b51c9dee..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/__init__.cpython-311.pyc b/vggt/layers/__pycache__/__init__.cpython-311.pyc deleted file mode 100644 index e52510e608fd506e4d4b743ec0783996248da7e8..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/__init__.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/__init__.cpython-312.pyc b/vggt/layers/__pycache__/__init__.cpython-312.pyc deleted file mode 100644 index c78ee56d649d02592480f9a936e056cacfac54fa..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/__init__.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/attention.cpython-310.pyc b/vggt/layers/__pycache__/attention.cpython-310.pyc deleted file mode 100644 index f53c19f53def6e22dce3330bc0b6f45030a16af5..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/attention.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/attention.cpython-311.pyc b/vggt/layers/__pycache__/attention.cpython-311.pyc deleted file mode 100644 index 01aa3d060f9cb8a587f388bf85842ef8c705f523..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/attention.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/attention.cpython-312.pyc b/vggt/layers/__pycache__/attention.cpython-312.pyc deleted file mode 100644 index f5c5a87b6ee9c79adf4db8e46a6d56e45c447d9a..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/attention.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/block.cpython-310.pyc b/vggt/layers/__pycache__/block.cpython-310.pyc deleted file mode 100644 index f3d104e68e5daa6a1607f5ec05460857316ff67d..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/block.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/block.cpython-311.pyc b/vggt/layers/__pycache__/block.cpython-311.pyc deleted file mode 100644 index beb9ee3180c268edb3e84a623051c5cde5cebd33..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/block.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/block.cpython-312.pyc b/vggt/layers/__pycache__/block.cpython-312.pyc deleted file mode 100644 index c2c0e4319ed4976018b3a8a3befb30d26f1f2e43..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/block.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/drop_path.cpython-310.pyc b/vggt/layers/__pycache__/drop_path.cpython-310.pyc deleted file mode 100644 index 9e9111b69beab87a38dc21e66964b3c128992988..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/drop_path.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/drop_path.cpython-311.pyc b/vggt/layers/__pycache__/drop_path.cpython-311.pyc deleted file mode 100644 index 51e4133db7788592cdf51a9ebeb494481bca0460..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/drop_path.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/drop_path.cpython-312.pyc b/vggt/layers/__pycache__/drop_path.cpython-312.pyc deleted file mode 100644 index 8db6ed8659d56003ec6e30e8844cacdee7650183..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/drop_path.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/layer_scale.cpython-310.pyc b/vggt/layers/__pycache__/layer_scale.cpython-310.pyc deleted file mode 100644 index fdfa58ee3b7335bf9fac09afe34c28bb9b565fd6..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/layer_scale.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/layer_scale.cpython-311.pyc b/vggt/layers/__pycache__/layer_scale.cpython-311.pyc deleted file mode 100644 index e8d717d5f486cea02877ada1fc48b80a74cd97da..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/layer_scale.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/layer_scale.cpython-312.pyc b/vggt/layers/__pycache__/layer_scale.cpython-312.pyc deleted file mode 100644 index 1336f757c18dec65a66c97fa75018a7f90ea7481..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/layer_scale.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/mlp.cpython-310.pyc b/vggt/layers/__pycache__/mlp.cpython-310.pyc deleted file mode 100644 index fb277a307b61f7eef0dec6804a3e95bfb5f3d1a1..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/mlp.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/mlp.cpython-311.pyc b/vggt/layers/__pycache__/mlp.cpython-311.pyc deleted file mode 100644 index f5dfa3abd939bb8ea850b5fcf15589eb2cfc7751..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/mlp.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/mlp.cpython-312.pyc b/vggt/layers/__pycache__/mlp.cpython-312.pyc deleted file mode 100644 index 042f9fad55a45f236884c13168bce4f1d31e16de..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/mlp.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/patch_embed.cpython-310.pyc b/vggt/layers/__pycache__/patch_embed.cpython-310.pyc deleted file mode 100644 index 1dce720bf6ada9e1284469fe0611439970471220..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/patch_embed.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/patch_embed.cpython-311.pyc b/vggt/layers/__pycache__/patch_embed.cpython-311.pyc deleted file mode 100644 index 178a450b8d438247ca3e94c47cecce6ab8165074..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/patch_embed.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/patch_embed.cpython-312.pyc b/vggt/layers/__pycache__/patch_embed.cpython-312.pyc deleted file mode 100644 index c8c4863004642f540170ad6cd3ef97cdc79a7a60..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/patch_embed.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/rope.cpython-310.pyc b/vggt/layers/__pycache__/rope.cpython-310.pyc deleted file mode 100644 index 6cd015fda482a648a2ab175c42a2feb018ff5f3a..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/rope.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/rope.cpython-311.pyc b/vggt/layers/__pycache__/rope.cpython-311.pyc deleted file mode 100644 index 5adb62450925c2c8611ebcc307f2b71fe00fc16f..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/rope.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/rope.cpython-312.pyc b/vggt/layers/__pycache__/rope.cpython-312.pyc deleted file mode 100644 index b08d42d1c80a796a2b9b2d62a4401f20bf22b467..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/rope.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/swiglu_ffn.cpython-310.pyc b/vggt/layers/__pycache__/swiglu_ffn.cpython-310.pyc deleted file mode 100644 index b354cc7e93643dacb2d6e14dd5d35d14da0cbc83..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/swiglu_ffn.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/swiglu_ffn.cpython-311.pyc b/vggt/layers/__pycache__/swiglu_ffn.cpython-311.pyc deleted file mode 100644 index 854f37a5df453f5600ff1d9582e306c764b6238d..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/swiglu_ffn.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/swiglu_ffn.cpython-312.pyc b/vggt/layers/__pycache__/swiglu_ffn.cpython-312.pyc deleted file mode 100644 index 44534316fd90d45d1e017c6d4211c399897c3de8..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/swiglu_ffn.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/vision_transformer.cpython-310.pyc b/vggt/layers/__pycache__/vision_transformer.cpython-310.pyc deleted file mode 100644 index 188afddb380e49d554bc2432e8634cce7a123e48..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/vision_transformer.cpython-310.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/vision_transformer.cpython-311.pyc b/vggt/layers/__pycache__/vision_transformer.cpython-311.pyc deleted file mode 100644 index 28338bfeb0dd2c309ec434379e704fbc5284b04a..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/vision_transformer.cpython-311.pyc and /dev/null differ diff --git a/vggt/layers/__pycache__/vision_transformer.cpython-312.pyc b/vggt/layers/__pycache__/vision_transformer.cpython-312.pyc deleted file mode 100644 index c8a84c4671b3b93a38a238b48c459b7bbca94c58..0000000000000000000000000000000000000000 Binary files a/vggt/layers/__pycache__/vision_transformer.cpython-312.pyc and /dev/null differ diff --git a/vggt/layers/attention.py b/vggt/layers/attention.py index 55ce51b5539af99b4254b59599dfd3ccd7bae182..8f232ef672212bbac29c44e2929909d646070f8c 100644 --- a/vggt/layers/attention.py +++ b/vggt/layers/attention.py @@ -55,228 +55,28 @@ class Attention(nn.Module): self, x: torch.Tensor, pos=None, - attn_mask=None, - past_key_values=None, - use_cache=False ) -> Union[torch.Tensor, Tuple[torch.Tensor, Tuple]]: - if False: - torch.set_printoptions(threshold=float('inf')) - torch.set_printoptions(precision=10) - log_file = "baseline.log" - - first_dimension = 0 - second_dimension = 1 - third_dimension = 0 - fourth_dimension_start = 10 - fourth_dimension_end = 20 - - if False: - with open(log_file, "a") as f: - f.write(f"--- Forward ---\n") - f.write(f"X shape {x.shape}, dtype: {x.dtype}\n") - with torch.no_grad(): - x_mean = x.float().mean().item() - x_max = x.float().max().item() - some_x = x[0, :-100, 10] - f.write(f" X stats: mean={x_mean:.6f}, max={x_max:.6f}\n") - f.write(f" Some X stats: {some_x}\n") - B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) - - if False: - with open(log_file, "a") as f: - f.write("--- Init ---\n") - f.write(f"K shape {k.shape}, V shape {v.shape}, Q shape {q.shape}, dtype: {k.dtype}, {v.dtype}, {q.dtype}\n") - with torch.no_grad(): - k_mean = k.float().mean().item() - k_max = k.float().max().item() - v_mean = v.float().mean().item() - v_max = v.float().max().item() - q_mean = q.float().mean().item() - q_max = q.float().max().item() - #some_q = q[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - #some_k = k[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - #some_v = v[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - some_q = q[0, 0, -100:, 0] - some_k = k[0, 0, -100:, 0] - some_v = v[0, 0, -100:, 0] - f.write(f" Q stats: mean={q_mean:.6f}, max={q_max:.6f}\n") - f.write(f" Some Q stats: {some_q}\n") - f.write(f" K stats: mean={k_mean:.6f}, max={k_max:.6f}\n") - f.write(f" Some K stats: {some_k}\n") - f.write(f" V stats: mean={v_mean:.6f}, max={v_max:.6f}\n") - f.write(f" Some V stats: {some_v}\n") - if q.shape[-2] > 1041 and False: - last_q = q[:, :, -1041:, :] - with torch.no_grad(): - last_q_mean = last_q.float().mean().item() - last_q_max = last_q.float().max().item() - some = last_q[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last Q stats: mean={last_q_mean:.6f}, max={last_q_max:.6f}\n") - f.write(f" Some Last Q stats: {some}\n") - - if k.shape[-2] > 1041 and False: - last_k = k[:, :, -1041:, :] - with torch.no_grad(): - last_k_mean = last_k.float().mean().item() - last_k_max = last_k.float().max().item() - some = last_k[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last K stats: mean={last_k_mean:.6f}, max={last_k_max:.6f}\n") - f.write(f" Some Last K stats: {some}\n") - - if v.shape[-2] > 1041 and False: - last_v = v[:, :, -1041:, :] - with torch.no_grad(): - last_v_mean = last_v.float().mean().item() - last_v_max = last_v.float().max().item() - some = last_v[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last V stats: mean={last_v_mean:.6f}, max={last_v_max:.6f}\n") - f.write(f" Some Last V stats: {some}\n") - pos_k = pos - if use_cache: - k = k.unsqueeze(2) - v = v.unsqueeze(2) - if past_key_values is not None: - past_k, past_v = past_key_values - k = torch.cat([past_k, k], dim=2) - v = torch.cat([past_v, v], dim=2) - - new_kv = (k, v) - a, b, c, d, e = k.shape - k = k.reshape(a, b, c*d, e) - v = v.reshape(a, b, c*d, e) - if pos_k is not None: - #print(pos_k.shape) - pos_k = pos_k.repeat(1, c, 1) - #print(pos_k.shape) - if False: - with open(log_file, "a") as f: - f.write("--- After past key values ---\n") - f.write(f"K shape {k.shape}, V shape {v.shape}, dtype: {k.dtype}, {v.dtype}\n") - with torch.no_grad(): - k_mean = k.float().mean().item() - k_max = k.float().max().item() - v_mean = v.float().mean().item() - v_max = v.float().max().item() - some_k = k[0, 0, -100:, 0] - some_v = v[0, 0, -100:, 0] - f.write(f" K stats: mean={k_mean:.6f}, max={k_max:.6f}\n") - f.write(f" Some K stats: {some_k}\n") - f.write(f" V stats: mean={v_mean:.6f}, max={v_max:.6f}\n") - f.write(f" Some V stats: {some_v}\n") - if k.shape[-2] > 1041 and False: - last_k = k[:, :, -1041:, :] - with torch.no_grad(): - last_k_mean = last_k.float().mean().item() - last_k_max = last_k.float().max().item() - some = last_k[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last K stats: mean={last_k_mean:.6f}, max={last_k_max:.6f}\n") - f.write(f" Some Last K stats: {some}\n") - if v.shape[-2] > 1041 and False: - last_v = v[:, :, -1041:, :] - with torch.no_grad(): - last_v_mean = last_v.float().mean().item() - last_v_max = last_v.float().max().item() - some = last_v[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last V stats: mean={last_v_mean:.6f}, max={last_v_max:.6f}\n") - f.write(f" Some Last V stats: {some}\n") - q, k = self.q_norm(q), self.k_norm(k) - if False: - with open(log_file, "a") as f: - f.write("--- After norm ---\n") - f.write(f"K shape {k.shape}, Q shape {q.shape}, dtype: {k.dtype}, {q.dtype}\n") - with torch.no_grad(): - k_mean = k.float().mean().item() - k_max = k.float().max().item() - q_mean = q.float().mean().item() - q_max = q.float().max().item() - some_q = q[0, 0, -100:, 0] - some_k = k[0, 0, -100:, 0] - - f.write(f" Q stats: mean={q_mean:.6f}, max={q_max:.6f}\n") - f.write(f" Some Q stats: {some_q}\n") - f.write(f" K stats: mean={k_mean:.6f}, max={k_max:.6f}\n") - f.write(f" Some K stats: {some_k}\n") - if q.shape[-2] > 1041 and False: - last_q = q[:, :, -1041:, :] - with torch.no_grad(): - last_q_mean = last_q.float().mean().item() - last_q_max = last_q.float().max().item() - some = last_q[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last Q stats: mean={last_q_mean:.6f}, max={last_q_max:.6f}\n") - f.write(f" Some Last Q stats: {some}\n") - - if k.shape[-2] > 1041 and False: - last_k = k[:, :, -1041:, :] - with torch.no_grad(): - last_k_mean = last_k.float().mean().item() - last_k_max = last_k.float().max().item() - some = last_k[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last K stats: mean={last_k_mean:.6f}, max={last_k_max:.6f}\n") - f.write(f" Some Last K stats: {some}\n") - if self.rope is not None: - q = self.rope(q, pos) - k = self.rope(k, pos_k) - - if False: - with open(log_file, "a") as f: - f.write("--- After ROPE ---\n") - f.write(f"K shape {k.shape}, Q shape {q.shape}, dtype: {k.dtype}, {q.dtype}\n") - with torch.no_grad(): - q_mean = q.float().mean().item() - q_max = q.float().max().item() - k_mean = k.float().mean().item() - k_max = k.float().max().item() - some_q = q[0, 0, -100:, 0] - some_k = k[0, 0, -100:, 0] - f.write(f" Q stats: mean={q_mean:.6f}, max={q_max:.6f}\n") - f.write(f" Some Q stats: {some_q}\n") - f.write(f" K stats: mean={k_mean:.6f}, max={k_max:.6f}\n") - f.write(f" Some K stats: {some_k}\n") - if q.shape[-2] > 1041 and False: - last_q = q[:, :, -1041:, :] - with torch.no_grad(): - last_q_mean = last_q.float().mean().item() - last_q_max = last_q.float().max().item() - some = last_q[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last Q stats: mean={last_q_mean:.6f}, max={last_q_max:.6f}\n") - f.write(f" Some Last Q stats: {some}\n") - - if k.shape[-2] > 1041 and False: - last_k = k[:, :, -1041:, :] - with torch.no_grad(): - last_k_mean = last_k.float().mean().item() - last_k_max = last_k.float().max().item() - some = last_k[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last K stats: mean={last_k_mean:.6f}, max={last_k_max:.6f}\n") - f.write(f" Some Last K stats: {some}\n") - + k = self.rope(k, pos) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, - attn_mask=attn_mask, dropout_p=self.attn_drop.p if self.training else 0.0, ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) - - # Mask - if attn_mask is not None: - assert attn_mask.shape[-2:] == (N, N), f"Expected mask shape [..., {N}, {N}], got {attn_mask.shape}" - attn = attn + attn_mask - attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v @@ -284,9 +84,6 @@ class Attention(nn.Module): x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) - - if use_cache: - return x, new_kv return x @@ -296,26 +93,17 @@ class MemEffAttention(Attention): x: Tensor, attn_bias=None, pos=None, - past_key_values=None, - use_cache=False ) -> Union[torch.Tensor, Tuple[torch.Tensor, Dict]]: - assert pos is None - if use_cache or not XFORMERS_AVAILABLE: + if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") - return super().forward( - x, - pos=pos, - attn_mask=attn_bias, - past_key_values=past_key_values, - use_cache=use_cache - ) + return super().forward(x) B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) - q, k, v = unbind(qkv, 2) + q, k, v = qkv.unbind(2) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) diff --git a/vggt/layers/block.py b/vggt/layers/block.py index a70ada5771ebdf4ec735320171b3b75cd9fc911a..01ed2788b9fee5f3daceea29c4299565bb6e5000 100644 --- a/vggt/layers/block.py +++ b/vggt/layers/block.py @@ -78,45 +78,13 @@ class Block(nn.Module): self.sample_drop_ratio = drop_path - def forward(self, x: Tensor, pos=None, attn_mask=None, past_key_values=None, use_cache=False) -> Union[Tensor, Tuple[Tensor, Dict]]: + def forward(self, x: Tensor, pos=None) -> Union[Tensor, Tuple[Tensor, Dict]]: - def attn_residual_func(x: Tensor, pos=None, attn_mask=None, past_key_values=None, use_cache=False) -> Union[Tensor, Tuple[Tensor, Dict]]: - log_file = "baseline.log" - torch.set_printoptions(threshold=float('inf')) - torch.set_printoptions(precision=10) - if False: - with open(log_file, "a") as f: - f.write(f"X shape {x.shape}, dtype: {x.dtype}\n") - with torch.no_grad(): - x_mean = x.float().mean().item() - x_max = x.float().max().item() - some_x = x[-1, :-100, 10] - f.write(f" X stats: mean={x_mean:.6f}, max={x_max:.6f}\n") - f.write(f" Some X stats: {some_x}\n") - if use_cache: - if attn_mask is not None: - output, new_kv = self.attn(self.norm1(x), pos=pos, attn_mask=attn_mask, - past_key_values=past_key_values, use_cache=True) - return self.ls1(output), new_kv - else: - output, new_kv = self.attn(self.norm1(x), pos=pos, - past_key_values=past_key_values, use_cache=True) - return self.ls1(output), new_kv - else: - if attn_mask is not None: - return self.ls1(self.attn(self.norm1(x), pos=pos, attn_mask=attn_mask)) - else: - return self.ls1(self.attn(self.norm1(x), pos=pos)) + def attn_residual_func(x: Tensor, pos=None) -> Union[Tensor, Tuple[Tensor, Dict]]: + return self.ls1(self.attn(self.norm1(x), pos=pos)) def ffn_residual_func(x: Tensor) -> Tensor: return self.ls2(self.mlp(self.norm2(x))) - - if use_cache: - attn_output, new_kv = attn_residual_func(x, pos=pos, attn_mask=attn_mask, - past_key_values=past_key_values, use_cache=True) - x = x + attn_output - x = x + ffn_residual_func(x) - return x, new_kv if self.training and self.sample_drop_ratio > 0.1: # the overhead is compensated only for a drop path rate larger than 0.1 @@ -132,10 +100,10 @@ class Block(nn.Module): sample_drop_ratio=self.sample_drop_ratio, ) elif self.training and self.sample_drop_ratio > 0.0: - x = x + self.drop_path1(attn_residual_func(x, pos=pos, attn_mask=attn_mask)) + x = x + self.drop_path1(attn_residual_func(x, pos=pos)) x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 else: - x = x + attn_residual_func(x, pos=pos, attn_mask=attn_mask) + x = x + attn_residual_func(x, pos=pos) x = x + ffn_residual_func(x) return x diff --git a/vggt/models/__pycache__/aggregator.cpython-310.pyc b/vggt/models/__pycache__/aggregator.cpython-310.pyc deleted file mode 100644 index 94aa0c3d492761931179b5407f040badc2ff59f2..0000000000000000000000000000000000000000 Binary files a/vggt/models/__pycache__/aggregator.cpython-310.pyc and /dev/null differ diff --git a/vggt/models/__pycache__/aggregator.cpython-311.pyc b/vggt/models/__pycache__/aggregator.cpython-311.pyc deleted file mode 100644 index 64d568ae4764997558c93f23b5a3bb622bdc91ef..0000000000000000000000000000000000000000 Binary files a/vggt/models/__pycache__/aggregator.cpython-311.pyc and /dev/null differ diff --git a/vggt/models/__pycache__/aggregator.cpython-312.pyc b/vggt/models/__pycache__/aggregator.cpython-312.pyc deleted file mode 100644 index 2b16906bd7e7872184ede1be52c7bc45bce9a10f..0000000000000000000000000000000000000000 Binary files a/vggt/models/__pycache__/aggregator.cpython-312.pyc and /dev/null differ diff --git a/vggt/models/__pycache__/vggt.cpython-310.pyc b/vggt/models/__pycache__/vggt.cpython-310.pyc deleted file mode 100644 index 1e494953a01c63a708f2a3f792c87818dc53af3e..0000000000000000000000000000000000000000 Binary files a/vggt/models/__pycache__/vggt.cpython-310.pyc and /dev/null differ diff --git a/vggt/models/__pycache__/vggt.cpython-311.pyc b/vggt/models/__pycache__/vggt.cpython-311.pyc deleted file mode 100644 index cc9c9da41aa8541d55bce3695c415f5a76edde0c..0000000000000000000000000000000000000000 Binary files a/vggt/models/__pycache__/vggt.cpython-311.pyc and /dev/null differ diff --git a/vggt/models/__pycache__/vggt.cpython-312.pyc b/vggt/models/__pycache__/vggt.cpython-312.pyc deleted file mode 100644 index 8805daefae1703af26efb3f0d33758ae5106ede6..0000000000000000000000000000000000000000 Binary files a/vggt/models/__pycache__/vggt.cpython-312.pyc and /dev/null differ diff --git a/vggt/models/aggregator.py b/vggt/models/aggregator.py index c5e8b4875630caa73f4fc88302c5f1e5e340a2d0..cec455d20328fbc63da0345d05692442fe79d7ad 100644 --- a/vggt/models/aggregator.py +++ b/vggt/models/aggregator.py @@ -66,7 +66,6 @@ class Aggregator(nn.Module): qk_norm=True, rope_freq=100, init_values=0.01, - use_causal_global=True, ): super().__init__() @@ -144,8 +143,6 @@ class Aggregator(nn.Module): persistent=False, ) - self.use_causal_global = use_causal_global - def __build_patch_embed__( self, patch_embed, @@ -190,9 +187,6 @@ class Aggregator(nn.Module): def forward( self, images: torch.Tensor, - past_key_values=None, - use_cache=False, - past_frame_idx=0 ) -> Union[Tuple[List[torch.Tensor], int], Tuple[List[torch.Tensor], int, Dict]]: """ Args: @@ -205,62 +199,6 @@ class Aggregator(nn.Module): and the patch_start_idx indicating where patch tokens begin. """ B, S, C_in, H, W = images.shape - if use_cache and past_key_values[0] is not None: - _, _, S_true, _, _ = past_key_values[0][0].shape - S_true += 1 - else: - S_true = S - - if False: - import os - from datetime import datetime - first_dimension = 0 - second_dimension = 1 - third_dimension = 0 - fourth_dimension_start = 10 - fourth_dimension_end = 20 - timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") - log_file = f"baseline.log" - - if use_cache and S > 1: - print(f"Use KV cache expects S=1, got S={S}") - - if False: - with open(log_file, "a") as f: - if use_cache and past_key_values is not None: - f.write(f"=== Past KV cache initial state ===\n") - for i, kv in enumerate(past_key_values): - if kv is not None: - k, v = kv - f.write(f"Block {i}: K shape {k.shape}, V shape {v.shape}, dtype: {k.dtype}, {v.dtype}\n") - with torch.no_grad(): - k_mean = k.float().mean().item() - k_max = k.float().max().item() - v_mean = v.float().mean().item() - v_max = v.float().max().item() - f.write(f" K stats: mean={k_mean:.6f}, max={k_max:.6f}\n") - f.write(f" V stats: mean={v_mean:.6f}, max={v_max:.6f}\n") - - if k.shape[-2] >= 1041 and False: - last_k = k[:, :, -1041:, :] - with torch.no_grad(): - last_k_mean = last_k.float().mean().item() - last_k_max = last_k.float().max().item() - some = last_k[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last K stats: mean={last_k_mean:.6f}, max={last_k_max:.6f}\n") - f.write(f" Some Last K stats: {some}\n") - - if v.shape[-2] >= 1041 and False: - last_v = v[:, :, -1041:, :] - with torch.no_grad(): - last_v_mean = last_v.float().mean().item() - last_v_max = last_v.float().max().item() - some = last_v[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last V stats: mean={last_v_mean:.6f}, max={last_v_max:.6f}\n") - f.write(f" Some Last V stats: {some}\n") - else: - f.write(f"Block {i}: None\n") - # Normalize images and reshape for patch embed images = (images - self._resnet_mean.to(images.device)) / self._resnet_std.to(images.device) @@ -268,46 +206,13 @@ class Aggregator(nn.Module): images = images.reshape(B * S, C_in, H, W) patch_tokens = self.patch_embed(images) - - if isinstance(patch_tokens, dict): patch_tokens = patch_tokens["x_norm_patchtokens"] - if False: - x = patch_tokens - with open(log_file, "a") as f: - f.write(f"=== Patch tokens initial state ===\n") - f.write(f"X shape {x.shape}, dtype: {x.dtype}\n") - with torch.no_grad(): - x_mean = x.float().mean().item() - x_max = x.float().max().item() - some_x = x[-1, :-100, 10] - f.write(f" X stats: mean={x_mean:.6f}, max={x_max:.6f}\n") - f.write(f" Some X stats: {some_x}\n") - f.write(f"=== Patch tokens after embedding ===\n") - _, P, C = patch_tokens.shape - if use_cache: - # Expand camera and register tokens to match batch size and sequence length - camera_token_full = slice_expand_and_flatten(self.camera_token, B, S_true) - camera_token = camera_token_full[-1:, :, :] - - register_token_full = slice_expand_and_flatten(self.register_token, B, S_true) - register_token = register_token_full[-1:, :, :] - else: - camera_token = slice_expand_and_flatten(self.camera_token, B, S) - register_token = slice_expand_and_flatten(self.register_token, B, S) - if False: - with open(log_file, "a") as f: - f.write(f"=== Camera tokens initial state ===\n") - f.write(f"Camera token shape {camera_token.shape}, dtype: {camera_token.dtype}\n") - f.write(f"{camera_token}\n") - if False: - with open(log_file, "a") as f: - f.write(f"=== Register tokens initial state ===\n") - f.write(f"Register token shape {register_token.shape}, dtype: {register_token.dtype}\n") - f.write(f"{register_token}\n") + camera_token = slice_expand_and_flatten(self.camera_token, B, S) + register_token = slice_expand_and_flatten(self.register_token, B, S) # Concatenate special tokens with patch tokens tokens = torch.cat([camera_token, register_token, patch_tokens], dim=1) @@ -326,81 +231,20 @@ class Aggregator(nn.Module): # update P because we added special tokens _, P, C = tokens.shape - # 在处理区块前添加日志 frame_idx = 0 global_idx = 0 output_list = [] for block_num in range(self.aa_block_num): - if False: - with open(log_file, "a") as f: - f.write(f"=== Processing AA block {block_num}/{self.aa_block_num} ===\n") for attn_type in self.aa_order: if attn_type == "frame": tokens, frame_idx, frame_intermediates = self._process_frame_attention( tokens, B, S, P, C, frame_idx, pos=pos ) - if False: - with open(log_file, "a") as f: - f.write(f"Frame attention completed: frame_idx = {frame_idx}\n") elif attn_type == "global": - if use_cache: - if False: - with open(log_file, "a") as f: - f.write(f"Global attention with KV cache: global_idx = {global_idx}\n") - if past_key_values[global_idx] is not None: - k, v = past_key_values[global_idx] - if False: - with open(log_file, "a") as f: - f.write(f" Using cached KV at idx {global_idx}: K shape {k.shape}, V shape {v.shape}, dtype: {k.dtype}, {v.dtype}\n") - - tokens, global_idx, global_intermediates, new_kv = self._process_global_attention( - tokens, B, S, P, C, global_idx, pos=pos, - past_key_values_block=past_key_values[global_idx] if past_key_values[global_idx] is not None else None, - use_cache=True, - past_frame_idx=past_frame_idx - ) - if False: - with open(log_file, "a") as f: - # 打印更新后的 KV 缓存 - if new_kv is not None: - k, v = new_kv - f.write(f" New KV cache: K shape {k.shape}, V shape {v.shape}, dtype: {k.dtype}, {v.dtype}\n") - f.write(f" Updating block at idx {global_idx-1}\n") - with torch.no_grad(): - k_mean = k.float().mean().item() - k_max = k.float().max().item() - v_mean = v.float().mean().item() - v_max = v.float().max().item() - f.write(f" K stats: mean={k_mean:.6f}, max={k_max:.6f}\n") - f.write(f" V stats: mean={v_mean:.6f}, max={v_max:.6f}\n") - - if k.shape[-2] >= 1041: - last_k = k[:, :, -1041:, :] - with torch.no_grad(): - last_k_mean = last_k.float().mean().item() - last_k_max = last_k.float().max().item() - some = last_k[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last K stats: mean={last_k_mean:.6f}, max={last_k_max:.6f}\n") - #f.write(f" Some Last K stats: {some}\n") - - if v.shape[-2] >= 1041: - last_v = v[:, :, -1041:, :] - with torch.no_grad(): - last_v_mean = last_v.float().mean().item() - last_v_max = last_v.float().max().item() - some = last_v[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last V stats: mean={last_v_mean:.6f}, max={last_v_max:.6f}\n") - #f.write(f" Some Last V stats: {some}\n") - - past_key_values[global_idx - 1] = new_kv - else: - tokens, global_idx, global_intermediates = self._process_global_attention( - tokens, B, S, P, C, global_idx, pos=pos - ) - if False: - with open(log_file, "a") as f: - f.write(f"Global attention without KV cache: global_idx = {global_idx}\n") + tokens, global_idx, global_intermediates = self._process_global_attention( + tokens, B, S, P, C, global_idx, pos=pos + ) else: raise ValueError(f"Unknown attention type: {attn_type}") @@ -413,45 +257,6 @@ class Aggregator(nn.Module): del frame_intermediates del global_intermediates - if False: - with open(log_file, "a") as f: - # 在返回前添加最终状态日志 - if use_cache: - f.write(f"=== Final KV cache state ===\n") - for i, kv in enumerate(past_key_values): - if kv is not None: - k, v = kv - f.write(f"Block {i}: K shape {k.shape}, V shape {v.shape}, dtype: {k.dtype}, {v.dtype}\n") - with torch.no_grad(): - k_mean = k.float().mean().item() - k_max = k.float().max().item() - v_mean = v.float().mean().item() - v_max = v.float().max().item() - f.write(f" K stats: mean={k_mean:.6f}, max={k_max:.6f}\n") - f.write(f" V stats: mean={v_mean:.6f}, max={v_max:.6f}\n") - - if k.shape[-2] >= 1041 and False: - last_k = k[:, :, -1041:, :] - with torch.no_grad(): - last_k_mean = last_k.float().mean().item() - last_k_max = last_k.float().max().item() - some = last_k[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last K stats: mean={last_k_mean:.6f}, max={last_k_max:.6f}\n") - f.write(f" Some Last K stats: {some}\n") - - if v.shape[-2] >= 1041 and False: - last_v = v[:, :, -1041:, :] - with torch.no_grad(): - last_v_mean = last_v.float().mean().item() - last_v_max = last_v.float().max().item() - some = last_v[first_dimension, second_dimension, third_dimension, fourth_dimension_start:fourth_dimension_end] - f.write(f" Last V stats: mean={last_v_mean:.6f}, max={last_v_max:.6f}\n") - f.write(f" Some Last V stats: {some}\n") - else: - f.write(f"Block {i}: None\n") - - if use_cache: - return output_list, self.patch_start_idx, past_key_values return output_list, self.patch_start_idx @@ -477,25 +282,10 @@ class Aggregator(nn.Module): return tokens, frame_idx, intermediates - def _process_global_attention( - self, - tokens, - B, - S, - P, - C, - global_idx, - pos=None, - past_key_values_block=None, - use_cache=False, - past_frame_idx=0 - ) -> Union[Tuple[torch.Tensor, int, List[torch.Tensor]], Tuple[torch.Tensor, int, List[torch.Tensor], List]]: + def _process_global_attention(self, tokens, B, S, P, C, global_idx, pos=None) -> Union[Tuple[torch.Tensor, int, List[torch.Tensor]], Tuple[torch.Tensor, int, List[torch.Tensor], List]]: """ Process global attention blocks. We keep tokens in shape (B, S*P, C). - """ - #torch.cuda.synchronize() - #start_mem = torch.cuda.memory_allocated() / 1024 / 1024 # MB - #print(f"Before _process_global_attention: {start_mem:.2f} MB") + """ if tokens.shape != (B, S * P, C): tokens = tokens.reshape(B, S, P, C).reshape(B, S * P, C) @@ -506,36 +296,12 @@ class Aggregator(nn.Module): intermediates = [] for _ in range(self.aa_block_size): - - if self.use_causal_global and not use_cache: - L = S * P - frame_ids = torch.arange(L, device=tokens.device) // P # [0,0,...,1,1,...,S-1] - future_frame = frame_ids.unsqueeze(1) < frame_ids.unsqueeze(0) - attn_mask = future_frame.to(tokens.dtype) * torch.finfo(tokens.dtype).min - else: - attn_mask = None - - if use_cache: - tokens, block_kv = self.global_blocks[global_idx]( - tokens, - pos=pos, - attn_mask=attn_mask, - past_key_values=past_key_values_block, - use_cache=True - ) - else: - tokens = self.global_blocks[global_idx](tokens, pos=pos, attn_mask=attn_mask) + tokens = self.global_blocks[global_idx](tokens, pos=pos) global_idx += 1 intermediates.append(tokens.reshape(B, S, P, C)) - # if self.use_causal_global: - # del attn_mask - - if use_cache: - return tokens, global_idx, intermediates, block_kv - else: - return tokens, global_idx, intermediates + return tokens, global_idx, intermediates diff --git a/vggt/models/vggt.py b/vggt/models/vggt.py index e7bfa31fc87142c7f0f7720cde9cbec6db0aedd8..65b1dd76be36372d8c321cf3c8f9892282ef92ae 100644 --- a/vggt/models/vggt.py +++ b/vggt/models/vggt.py @@ -12,23 +12,28 @@ from vggt.models.aggregator import Aggregator from vggt.heads.camera_head import CameraHead from vggt.heads.dpt_head import DPTHead from vggt.heads.track_head import TrackHead +from transformers.file_utils import ModelOutput +from typing import Optional, Tuple, List, Any +from dataclasses import dataclass +@dataclass +class VGGTOutput(ModelOutput): + ress: Optional[List[dict]] = None + views: Optional[torch.Tensor] = None class VGGT(nn.Module, PyTorchModelHubMixin): - def __init__(self, img_size=518, patch_size=14, embed_dim=1024, use_causal_global=True, use_distil=False): + def __init__(self, img_size=518, patch_size=14, embed_dim=1024): super().__init__() - self.aggregator = Aggregator(img_size=img_size, patch_size=patch_size, embed_dim=embed_dim, use_causal_global=use_causal_global) + self.aggregator = Aggregator(img_size=img_size, patch_size=patch_size, embed_dim=embed_dim) self.camera_head = CameraHead(dim_in=2 * embed_dim) self.point_head = DPTHead(dim_in=2 * embed_dim, output_dim=4, activation="inv_log", conf_activation="expp1") self.depth_head = DPTHead(dim_in=2 * embed_dim, output_dim=2, activation="exp", conf_activation="expp1") self.track_head = TrackHead(dim_in=2 * embed_dim, patch_size=patch_size) - self.use_causal_global = use_causal_global - self.use_distil = use_distil def forward( self, - images: torch.Tensor, + views, query_points: torch.Tensor = None, ): """ @@ -40,6 +45,10 @@ class VGGT(nn.Module, PyTorchModelHubMixin): query_points (torch.Tensor, optional): Query points for tracking, in pixel coordinates. Shape: [N, 2] or [B, N, 2], where N is the number of query points. Default: None + history_info (dict, optional): Token history for streaming inference + past_key_values (dict, optional): KV cache from previous steps + use_cache (bool): Whether to use and return KV cache + past_frame_idx (int): Frame index for position encoding in sequence Returns: dict: A dictionary containing the following predictions: @@ -55,15 +64,18 @@ class VGGT(nn.Module, PyTorchModelHubMixin): - vis (torch.Tensor): Visibility scores for tracked points with shape [B, S, N] - conf (torch.Tensor): Confidence scores for tracked points with shape [B, S, N] """ + images = torch.stack( + [view["img"] for view in views], dim=0 + ).permute(1, 0, 2, 3, 4) # B S C H # If without batch dimension, add it if len(images.shape) == 4: images = images.unsqueeze(0) + if query_points is not None and len(query_points.shape) == 2: query_points = query_points.unsqueeze(0) - + aggregated_tokens_list, patch_start_idx = self.aggregator(images) - predictions = {} with torch.cuda.amp.autocast(enabled=False): @@ -71,29 +83,146 @@ class VGGT(nn.Module, PyTorchModelHubMixin): pose_enc_list = self.camera_head(aggregated_tokens_list) predictions["pose_enc"] = pose_enc_list[-1] # pose encoding of the last iteration - if self.depth_head is not None: - depth, depth_conf = self.depth_head( - aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx - ) - predictions["depth"] = depth - predictions["depth_conf"] = depth_conf - - if self.point_head is not None: - pts3d, pts3d_conf = self.point_head( - aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx - ) - predictions["world_points"] = pts3d - predictions["world_points_conf"] = pts3d_conf + depth, depth_conf = self.depth_head( + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx + ) + predictions["depth"] = depth + predictions["depth_conf"] = depth_conf + if self.point_head is not None: + pts3d, pts3d_conf = self.point_head( + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx + ) + predictions["world_points"] = pts3d + predictions["world_points_conf"] = pts3d_conf if self.track_head is not None and query_points is not None: track_list, vis, conf = self.track_head( - aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx, query_points=query_points + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx, + query_points=query_points ) predictions["track"] = track_list[-1] # track of the last iteration predictions["vis"] = vis predictions["conf"] = conf + predictions["images"] = images + + B, S = images.shape[:2] + ress = [] + for s in range(S): + res = { + 'pts3d_in_other_view': predictions['world_points'][:, s], # [B, H, W, 3] + 'conf': predictions['world_points_conf'][:, s], # [B, H, W] + + 'depth': predictions['depth'][:, s], # [B, H, W, 1] + 'depth_conf': predictions['depth_conf'][:, s], # [B, H, W] + + 'camera_pose': predictions['pose_enc'][:, s, :7], # [B, 7] + + **({'valid_mask': views[s]["valid_mask"]} + if 'valid_mask' in views[s] else {}), # [B, H, W] + + **({'track': predictions['track'][:, s], # [B, N, 2] + 'vis': predictions['vis'][:, s], # [B, N] + 'track_conf': predictions['conf'][:, s]} + if 'track' in predictions else {}) + } + ress.append(res) + return VGGTOutput(ress=ress, views=views) # [S] [B, C, H, W] + + def inference( + self, + views, + query_points: torch.Tensor = None, + ): + """ + Forward pass of the VGGT model. + + Args: + images (torch.Tensor): Input images with shape [S, 3, H, W] or [B, S, 3, H, W], in range [0, 1]. + B: batch size, S: sequence length, 3: RGB channels, H: height, W: width + query_points (torch.Tensor, optional): Query points for tracking, in pixel coordinates. + Shape: [N, 2] or [B, N, 2], where N is the number of query points. + Default: None + history_info (dict, optional): Token history for streaming inference + past_key_values (dict, optional): KV cache from previous steps + use_cache (bool): Whether to use and return KV cache + past_frame_idx (int): Frame index for position encoding in sequence + + Returns: + dict: A dictionary containing the following predictions: + - pose_enc (torch.Tensor): Camera pose encoding with shape [B, S, 9] (from the last iteration) + - depth (torch.Tensor): Predicted depth maps with shape [B, S, H, W, 1] + - depth_conf (torch.Tensor): Confidence scores for depth predictions with shape [B, S, H, W] + - world_points (torch.Tensor): 3D world coordinates for each pixel with shape [B, S, H, W, 3] + - world_points_conf (torch.Tensor): Confidence scores for world points with shape [B, S, H, W] + - images (torch.Tensor): Original input images, preserved for visualization - predictions["images"] = images + If query_points is provided, also includes: + - track (torch.Tensor): Point tracks with shape [B, S, N, 2] (from the last iteration), in pixel coordinates + - vis (torch.Tensor): Visibility scores for tracked points with shape [B, S, N] + - conf (torch.Tensor): Confidence scores for tracked points with shape [B, S, N] + """ + images = torch.stack( + [view["img"] for view in views], dim=0 + ).permute(1, 0, 2, 3, 4) # B S C H W + + # If without batch dimension, add it + if len(images.shape) == 4: + images = images.unsqueeze(0) + + if query_points is not None and len(query_points.shape) == 2: + query_points = query_points.unsqueeze(0) + + aggregated_tokens_list, patch_start_idx = self.aggregator(images) + predictions = {} - return predictions + with torch.cuda.amp.autocast(enabled=False): + if self.camera_head is not None: + pose_enc_list = self.camera_head(aggregated_tokens_list) + predictions["pose_enc"] = pose_enc_list[-1] # pose encoding of the last iteration + + if self.depth_head is not None: + depth, depth_conf = self.depth_head( + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx + ) + predictions["depth"] = depth + predictions["depth_conf"] = depth_conf + + if self.point_head is not None: + pts3d, pts3d_conf = self.point_head( + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx + ) + predictions["world_points"] = pts3d + predictions["world_points_conf"] = pts3d_conf + if self.track_head is not None and query_points is not None: + track_list, vis, conf = self.track_head( + aggregated_tokens_list, images=images, patch_start_idx=patch_start_idx, + query_points=query_points + ) + predictions["track"] = track_list[-1] # track of the last iteration + predictions["vis"] = vis + predictions["conf"] = conf + predictions["images"] = images + + B, S = images.shape[:2] + ress = [] + for s in range(S): + res = { + 'pts3d_in_other_view': predictions['world_points'][:, s], # [B, H, W, 3] + 'conf': predictions['world_points_conf'][:, s], # [B, H, W] + + 'depth': predictions['depth'][:, s], # [B, H, W, 1] + 'depth_conf': predictions['depth_conf'][:, s], # [B, H, W] + + 'camera_pose': predictions['pose_enc'][:, s, :], # [B, 9] + + **({'valid_mask': views[s]["valid_mask"]} + if 'valid_mask' in views[s] else {}), # [B, H, W] + + **({'track': predictions['track'][:, s], # [B, N, 2] + 'vis': predictions['vis'][:, s], # [B, N] + 'track_conf': predictions['conf'][:, s]} + if 'track' in predictions else {}) + } + ress.append(res) + return VGGTOutput(ress=ress, views=views) # [S] [B, C, H, W] \ No newline at end of file diff --git a/vggt/utils/__pycache__/geometry.cpython-310.pyc b/vggt/utils/__pycache__/geometry.cpython-310.pyc deleted file mode 100644 index d2d93ce51882e026cb62645e5745e71d52096275..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/geometry.cpython-310.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/geometry.cpython-311.pyc b/vggt/utils/__pycache__/geometry.cpython-311.pyc deleted file mode 100644 index eec2dadca23648a1fa8f31d4e34f3654a12e4b2b..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/geometry.cpython-311.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/geometry.cpython-312.pyc b/vggt/utils/__pycache__/geometry.cpython-312.pyc deleted file mode 100644 index 9e1ef14697f726259cc923ae2552e8551bde980a..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/geometry.cpython-312.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/load_fn.cpython-310.pyc b/vggt/utils/__pycache__/load_fn.cpython-310.pyc deleted file mode 100644 index ea3ed152a1a219081a9dde2133aed9081943abe3..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/load_fn.cpython-310.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/load_fn.cpython-311.pyc b/vggt/utils/__pycache__/load_fn.cpython-311.pyc deleted file mode 100644 index 15dec3e01cba36ca4b56e174a502b734cd1b1fd5..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/load_fn.cpython-311.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/load_fn.cpython-312.pyc b/vggt/utils/__pycache__/load_fn.cpython-312.pyc deleted file mode 100644 index d10598b69f2fef4c7a9329c388e141932a02b342..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/load_fn.cpython-312.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/pose_enc.cpython-311.pyc b/vggt/utils/__pycache__/pose_enc.cpython-311.pyc deleted file mode 100644 index 4d7b414b544ecab11493014ff77248f3691994b6..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/pose_enc.cpython-311.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/pose_enc.cpython-312.pyc b/vggt/utils/__pycache__/pose_enc.cpython-312.pyc deleted file mode 100644 index 8f56b1abd75896ad462781f44676bb2f21b9aee4..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/pose_enc.cpython-312.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/rotation.cpython-310.pyc b/vggt/utils/__pycache__/rotation.cpython-310.pyc deleted file mode 100644 index 07bddb1e0ca864f013cb6417b03311a21c864f58..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/rotation.cpython-310.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/rotation.cpython-311.pyc b/vggt/utils/__pycache__/rotation.cpython-311.pyc deleted file mode 100644 index 210d627dded44b5ca60706d22ad5858f838e9e58..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/rotation.cpython-311.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/rotation.cpython-312.pyc b/vggt/utils/__pycache__/rotation.cpython-312.pyc deleted file mode 100644 index 58886e8dee887d5945fa9db7721dce6b34f11b46..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/rotation.cpython-312.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/visual_track.cpython-310.pyc b/vggt/utils/__pycache__/visual_track.cpython-310.pyc deleted file mode 100644 index 4bc57330046eb42b71375ebc4cbae8ae4b7997de..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/visual_track.cpython-310.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/visual_track.cpython-311.pyc b/vggt/utils/__pycache__/visual_track.cpython-311.pyc deleted file mode 100644 index aed936b2af371fc97055b7f36a89e2fcbad69b58..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/visual_track.cpython-311.pyc and /dev/null differ diff --git a/vggt/utils/__pycache__/visual_track.cpython-312.pyc b/vggt/utils/__pycache__/visual_track.cpython-312.pyc deleted file mode 100644 index a4e0739095f4c147b0e48b3e3d214f1078c05718..0000000000000000000000000000000000000000 Binary files a/vggt/utils/__pycache__/visual_track.cpython-312.pyc and /dev/null differ diff --git a/vggt/utils/load_fn.py b/vggt/utils/load_fn.py index 14408aea5a30e9fa392d4569bae66869dc8a52ab..7032b1c8d1f09dd71922319394e4039aa8b01c2e 100644 --- a/vggt/utils/load_fn.py +++ b/vggt/utils/load_fn.py @@ -1,10 +1,14 @@ -import torch -import torch.nn.functional as F -from typing import Optional, Union, Tuple, Dict, List +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +import torch from PIL import Image from torchvision import transforms as TF + def load_and_preprocess_images(image_path_list, mode="crop"): """ A quick start function to load and preprocess images for model input. @@ -35,7 +39,7 @@ def load_and_preprocess_images(image_path_list, mode="crop"): # Check for empty list if len(image_path_list) == 0: raise ValueError("At least 1 image is required") - + # Validate mode if mode not in ["crop", "pad"]: raise ValueError("Mode must be either 'crop' or 'pad'") @@ -43,7 +47,7 @@ def load_and_preprocess_images(image_path_list, mode="crop"): images = [] shapes = set() to_tensor = TF.ToTensor() - target_size = 518 + target_size = 224 # First process all images and collect their shapes for image_path in image_path_list: @@ -62,7 +66,7 @@ def load_and_preprocess_images(image_path_list, mode="crop"): img = img.convert("RGB") width, height = img.size - + if mode == "pad": # Make the largest dimension 518px while maintaining aspect ratio if width >= height: @@ -74,8 +78,9 @@ def load_and_preprocess_images(image_path_list, mode="crop"): else: # mode == "crop" # Original behavior: set width to 518px new_width = target_size - # Calculate height maintaining aspect ratio, divisible by 14 - new_height = round(height * (new_width / width) / 14) * 14 + # Calcu late height maintaining aspect ratio, divisible by 14 + # new_height = round(height * (new_width / width) / 14) * 14 + new_height = target_size # Resize with new dimensions (width, height) img = img.resize((new_width, new_height), Image.Resampling.BICUBIC) @@ -84,19 +89,19 @@ def load_and_preprocess_images(image_path_list, mode="crop"): # Center crop height if it's larger than 518 (only in crop mode) if mode == "crop" and new_height > target_size: start_y = (new_height - target_size) // 2 - img = img[:, start_y : start_y + target_size, :] - + img = img[:, start_y: start_y + target_size, :] + # For pad mode, pad to make a square of target_size x target_size if mode == "pad": h_padding = target_size - img.shape[1] w_padding = target_size - img.shape[2] - + if h_padding > 0 or w_padding > 0: pad_top = h_padding // 2 pad_bottom = h_padding - pad_top pad_left = w_padding // 2 pad_right = w_padding - pad_left - + # Pad with white (value=1.0) img = torch.nn.functional.pad( img, (pad_left, pad_right, pad_top, pad_bottom), mode="constant", value=1.0