Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,7 @@ def extract_agent_info(filename: str):
|
|
33 |
return agent_type, model_name
|
34 |
|
35 |
def get_available_games() -> List[str]:
|
36 |
-
"""Extracts all unique game names from all SQLite databases."""
|
37 |
db_files = find_or_download_db()
|
38 |
game_names = set()
|
39 |
|
@@ -48,7 +48,9 @@ def get_available_games() -> List[str]:
|
|
48 |
finally:
|
49 |
conn.close()
|
50 |
|
51 |
-
|
|
|
|
|
52 |
|
53 |
def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
54 |
"""Extract and aggregate leaderboard stats from all SQLite databases."""
|
@@ -59,23 +61,48 @@ def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
|
59 |
conn = sqlite3.connect(db_file)
|
60 |
agent_type, model_name = extract_agent_info(db_file)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
df = pd.read_sql_query(query, conn, params=(game_name,))
|
67 |
df["agent_name"] = model_name
|
68 |
df["agent_type"] = agent_type
|
|
|
|
|
69 |
all_stats.append(df)
|
70 |
conn.close()
|
71 |
|
72 |
leaderboard_df = pd.concat(all_stats, ignore_index=True) if all_stats else pd.DataFrame()
|
|
|
|
|
|
|
|
|
73 |
return leaderboard_df
|
74 |
|
75 |
def generate_leaderboard_json():
|
76 |
"""Generate a JSON file containing leaderboard stats."""
|
77 |
available_games = get_available_games()
|
78 |
-
leaderboard = extract_leaderboard_stats(
|
79 |
json_file = "results/leaderboard_stats.json"
|
80 |
with open(json_file, "w", encoding="utf-8") as f:
|
81 |
json.dump({"timestamp": datetime.utcnow().isoformat(), "leaderboard": leaderboard}, f, indent=4)
|
@@ -83,10 +110,10 @@ def generate_leaderboard_json():
|
|
83 |
|
84 |
with gr.Blocks() as interface:
|
85 |
with gr.Tab("Leaderboard"):
|
86 |
-
gr.Markdown("# Leaderboard")
|
87 |
available_games = get_available_games()
|
88 |
-
leaderboard_game_dropdown = gr.Dropdown(available_games, label="Select Game", value=
|
89 |
-
leaderboard_table = gr.Dataframe()
|
90 |
generate_button = gr.Button("Generate Leaderboard JSON")
|
91 |
download_component = gr.File(label="Download Leaderboard JSON")
|
92 |
refresh_button = gr.Button("Refresh Leaderboard")
|
|
|
33 |
return agent_type, model_name
|
34 |
|
35 |
def get_available_games() -> List[str]:
|
36 |
+
"""Extracts all unique game names from all SQLite databases and includes 'Total Performance'."""
|
37 |
db_files = find_or_download_db()
|
38 |
game_names = set()
|
39 |
|
|
|
48 |
finally:
|
49 |
conn.close()
|
50 |
|
51 |
+
game_list = sorted(game_names) if game_names else ["No Games Found"]
|
52 |
+
game_list.insert(0, "Total Performance") # Ensure 'Total Performance' is always first
|
53 |
+
return game_list
|
54 |
|
55 |
def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
56 |
"""Extract and aggregate leaderboard stats from all SQLite databases."""
|
|
|
61 |
conn = sqlite3.connect(db_file)
|
62 |
agent_type, model_name = extract_agent_info(db_file)
|
63 |
|
64 |
+
if game_name == "Total Performance":
|
65 |
+
query = "SELECT game_name, COUNT(DISTINCT episode) AS games_played, " \
|
66 |
+
"AVG(generation_time) AS avg_gen_time, SUM(reward) AS total_rewards " \
|
67 |
+
"FROM game_results GROUP BY game_name"
|
68 |
+
df = pd.read_sql_query(query, conn)
|
69 |
+
else:
|
70 |
+
query = "SELECT COUNT(DISTINCT episode) AS games_played, " \
|
71 |
+
"AVG(generation_time) AS avg_gen_time, SUM(reward) AS total_rewards " \
|
72 |
+
"FROM game_results WHERE game_name = ?"
|
73 |
+
df = pd.read_sql_query(query, conn, params=(game_name,))
|
74 |
+
|
75 |
+
# Calculate win rate against random bot
|
76 |
+
vs_random_query = """
|
77 |
+
SELECT COUNT(*) FROM game_results
|
78 |
+
WHERE game_name = ? AND opponent = 'random_None' AND reward > 0
|
79 |
+
"""
|
80 |
+
total_vs_random_query = """
|
81 |
+
SELECT COUNT(*) FROM game_results
|
82 |
+
WHERE game_name = ? AND opponent = 'random_None'
|
83 |
+
"""
|
84 |
+
wins_vs_random = conn.execute(vs_random_query, (game_name,)).fetchone()[0] or 0
|
85 |
+
total_vs_random = conn.execute(total_vs_random_query, (game_name,)).fetchone()[0] or 0
|
86 |
+
vs_random_rate = (wins_vs_random / total_vs_random * 100) if total_vs_random > 0 else 0
|
87 |
|
|
|
88 |
df["agent_name"] = model_name
|
89 |
df["agent_type"] = agent_type
|
90 |
+
df["vs_random"] = round(vs_random_rate, 2)
|
91 |
+
|
92 |
all_stats.append(df)
|
93 |
conn.close()
|
94 |
|
95 |
leaderboard_df = pd.concat(all_stats, ignore_index=True) if all_stats else pd.DataFrame()
|
96 |
+
|
97 |
+
if leaderboard_df.empty:
|
98 |
+
leaderboard_df = pd.DataFrame(columns=["LLM Model", "# games", "moves/game", "illegal-moves", "win-rate", "vs Random"])
|
99 |
+
|
100 |
return leaderboard_df
|
101 |
|
102 |
def generate_leaderboard_json():
|
103 |
"""Generate a JSON file containing leaderboard stats."""
|
104 |
available_games = get_available_games()
|
105 |
+
leaderboard = extract_leaderboard_stats("Total Performance").to_dict(orient="records")
|
106 |
json_file = "results/leaderboard_stats.json"
|
107 |
with open(json_file, "w", encoding="utf-8") as f:
|
108 |
json.dump({"timestamp": datetime.utcnow().isoformat(), "leaderboard": leaderboard}, f, indent=4)
|
|
|
110 |
|
111 |
with gr.Blocks() as interface:
|
112 |
with gr.Tab("Leaderboard"):
|
113 |
+
gr.Markdown("# LLM Model Leaderboard\nTrack performance across different games!")
|
114 |
available_games = get_available_games()
|
115 |
+
leaderboard_game_dropdown = gr.Dropdown(available_games, label="Select Game", value="Total Performance")
|
116 |
+
leaderboard_table = gr.Dataframe(headers=["LLM Model", "# games", "moves/game", "illegal-moves", "win-rate", "vs Random"])
|
117 |
generate_button = gr.Button("Generate Leaderboard JSON")
|
118 |
download_component = gr.File(label="Download Leaderboard JSON")
|
119 |
refresh_button = gr.Button("Refresh Leaderboard")
|