Spaces:
Runtime error
Runtime error
Commit
·
7c7d36b
1
Parent(s):
82d26dd
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from Bio import Entrez
|
4 |
+
import requests
|
5 |
+
|
6 |
+
import os
|
7 |
+
|
8 |
+
HF_API = os.getenv('HF_API')
|
9 |
+
# Function to search PubMed for articles
|
10 |
+
def search_pubmed(query, retmax):
|
11 |
+
Entrez.email = '[email protected]'
|
12 |
+
handle = Entrez.esearch(db="pubmed", term=query, retmax=retmax)
|
13 |
+
record = Entrez.read(handle)
|
14 |
+
handle.close()
|
15 |
+
idlist = record['IdList']
|
16 |
+
handle = Entrez.efetch(db="pubmed", id=idlist, retmode="xml")
|
17 |
+
articles = Entrez.read(handle)['PubmedArticle']
|
18 |
+
handle.close()
|
19 |
+
article_list = []
|
20 |
+
for article in articles:
|
21 |
+
article_dict = {
|
22 |
+
'PMID': str(article['MedlineCitation']['PMID']),
|
23 |
+
'Authors': ' '.join([author['LastName'] + ' ' + author.get('Initials', '')
|
24 |
+
for author in article['MedlineCitation']['Article']['AuthorList']]),
|
25 |
+
'Title': article['MedlineCitation']['Article']['ArticleTitle'],
|
26 |
+
'Abstract': article['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', [None])[0]
|
27 |
+
}
|
28 |
+
article_list.append(article_dict)
|
29 |
+
return pd.DataFrame(article_list)
|
30 |
+
|
31 |
+
# Function to summarize articles using Hugging Face's API
|
32 |
+
def summarize_with_huggingface(model, selected_articles):
|
33 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
34 |
+
# Your Hugging Face API key
|
35 |
+
API_KEY = HF_API
|
36 |
+
headers = {"Authorization": f"Bearer {API_KEY}"}
|
37 |
+
# Prepare the text to summarize: concatenate all abstracts
|
38 |
+
print(type(selected_articles))
|
39 |
+
print(selected_articles.to_dict(orient='records'))
|
40 |
+
text_to_summarize = " ".join(
|
41 |
+
[f"PMID: {article['PMID']}. Authors: {article['Authors']}. Title: {article['Title']}. Abstract: {article['Abstract']}."
|
42 |
+
for article in selected_articles.to_dict(orient='records')]
|
43 |
+
)
|
44 |
+
# Define the payload
|
45 |
+
payload = {
|
46 |
+
"inputs": text_to_summarize,
|
47 |
+
"parameters": {"max_length": 300} # Adjust as needed
|
48 |
+
}
|
49 |
+
# Make the POST request to the Hugging Face API
|
50 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
51 |
+
response.raise_for_status() # Raise an HTTPError if the HTTP request returned an unsuccessful status code
|
52 |
+
# The API returns a list of dictionaries. We extract the summary from the first one.
|
53 |
+
return response.json()[0]['generated_text']
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
import gradio as gr
|
59 |
+
from Bio import Entrez
|
60 |
+
|
61 |
+
# Always tell NCBI who you are
|
62 |
+
Entrez.email = "[email protected]"
|
63 |
+
|
64 |
+
|
65 |
+
def process_query(keywords, top_k):
|
66 |
+
articles = search_pubmed(keywords, top_k)
|
67 |
+
# Convert each article from a dictionary to a list of values in the correct order
|
68 |
+
articles_for_display = [[article['pmid'], article['authors'], article['title'], article['abstract']] for article in articles]
|
69 |
+
return articles_for_display
|
70 |
+
|
71 |
+
|
72 |
+
def summarize_articles(indices, articles_for_display):
|
73 |
+
# Convert indices to a list of integers
|
74 |
+
selected_indices = [int(index.strip()) for index in indices.split(',') if index.strip().isdigit()]
|
75 |
+
# Convert the DataFrame to a list of dictionaries
|
76 |
+
articles_list = articles_for_display.to_dict(orient='records')
|
77 |
+
# Select articles based on the provided indices
|
78 |
+
selected_articles = [articles_list[index] for index in selected_indices]
|
79 |
+
# Generate the summary
|
80 |
+
summary = summarize_with_huggingface(selected_articles)
|
81 |
+
return summary
|
82 |
+
|
83 |
+
# Gradio interface
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown("### PubMed Article Summarizer")
|
86 |
+
model_input = gr.Textbox(label="Enter the model to use", value="h2oai/h2ogpt-4096-llama2-7b-chat")
|
87 |
+
query_input = gr.Textbox(label="Query Keywords")
|
88 |
+
retmax_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of articles")
|
89 |
+
search_button = gr.Button("Search")
|
90 |
+
output_table = gr.Dataframe(headers=["PMID", "Authors", "Title","Abstract" ])
|
91 |
+
summarize_button = gr.Button("Summarize")
|
92 |
+
summary_output = gr.Textbox()
|
93 |
+
|
94 |
+
def update_output_table(query, retmax):
|
95 |
+
df = search_pubmed(query, retmax)
|
96 |
+
# output_table.update(value=df)
|
97 |
+
return df
|
98 |
+
search_button.click(update_output_table, inputs=[query_input, retmax_input], outputs=output_table)
|
99 |
+
summarize_button.click(fn=summarize_with_huggingface, inputs=[model_input, output_table], outputs=summary_output)
|
100 |
+
|
101 |
+
demo.launch(debug=True)
|
102 |
+
|
103 |
+
if False:
|
104 |
+
with gr.Blocks() as demo:
|
105 |
+
gr.Markdown("### PubMed Article Summarizer")
|
106 |
+
with gr.Row():
|
107 |
+
query_input = gr.Textbox(label="Query Keywords")
|
108 |
+
top_k_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Top K Results")
|
109 |
+
search_button = gr.Button("Search")
|
110 |
+
output_table = gr.Dataframe(headers=["Title", "Authors", "Abstract", "PMID"])
|
111 |
+
indices_input = gr.Textbox(label="Enter indices of articles to summarize (comma-separated)")
|
112 |
+
summarize_button = gr.Button("Summarize Selected Articles")
|
113 |
+
summary_output = gr.Textbox(label="Summary")
|
114 |
+
|
115 |
+
search_button.click(
|
116 |
+
fn=process_query,
|
117 |
+
inputs=[query_input, top_k_input],
|
118 |
+
outputs=output_table
|
119 |
+
)
|
120 |
+
|
121 |
+
summarize_button.click(
|
122 |
+
fn=summarize_articles,
|
123 |
+
inputs=[indices_input, output_table],
|
124 |
+
outputs=summary_output
|
125 |
+
)
|
126 |
+
|
127 |
+
demo.launch(debug=True)
|